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DISCLAIMER
This Structural Design Cheatsheet covers the engineering 
formulas and equations I use regularly as a structural engineer. 
It’s a “short” summary of many of the blog posts we published 
on structuralbasics.com.

While this document covers many important formulas, be aware 
that it doesn’t cover every formula. And as for any structural 
engineering book or formula sheet, some explanations and 
formulas are simplified. For example, the wind load is only 
shown from one direction, or the steel Eurocode provides also 
formulas for bending and shear, normal force and bending, etc.

Structural engineering is simply too complex to cover every 
design situation.

Use the content of the document as a guide, but question 
everything critically. 

This document is supplied 'as-is,' without any express or implied 
warranty regarding the accuracy or completeness of the 
information it contains. The user assumes all risks associated 
with its use. The author will not be held responsible for any 
damage or harm to any person or entity that may come from 
utilizing this document.

With that out of the way, I hope this document helps you get a
good overview of structural design.
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STATICS
Simply supported beam – Line load

Mmax

l
Ra

Va

M

V

q

Rb

Vb

𝑅𝑎 = 𝑅𝑏 = 𝑞
𝑙

2

Reation forces:

𝑀𝑚𝑎𝑥 = 𝑞
𝑙2

8

Max. bending moment:

𝑉𝑎 = 𝑉𝑏 = 𝑞
𝑙

2

Max. shear forces:

Ra

Va

M

V

Rb

Vb

Q

Mmax

l

a b

linear

Simply supported beam – Point load

𝑅𝑎 = 𝑄
𝑏

𝑙
, 𝑅𝑏 = 𝑄

𝑎

𝑙

Reation forces:

𝑀𝑚𝑎𝑥 = 𝑄
𝑎 ∙ 𝑏

𝑙

Max. bending moment:

𝑉𝑎 = 𝑄
𝑏

𝑙
, 𝑉𝑏 = 𝑄

𝑎

𝑙

Shear forces:

For more moment and shear force formulas of the simply supported beam click here.

Ma

M

V

Ra

Vb

q

Mmax

l

linear

Cantilever beam – Line load

𝑅𝑎 = 𝑞 ∙ 𝑙, 𝑀𝑎 = −
1

2
∙ 𝑞 ∙ 𝑙2

Reation forces:

𝑀𝑚𝑎𝑥 = −
1

2
∙ 𝑞 ∙ 𝑙2

Max. bending moment:

𝑉𝑎 = −𝑞 ∙ 𝑙

Shear forces:

parabolic
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https://www.structuralbasics.com/beam-moment-formulas/


STATICS
Cantilever beam – Point load

Mmax
l

M

V

Q

Ra

Va

𝑅𝑎 = 𝑄

Reation forces:

𝑀𝑚𝑎𝑥 = 𝑄 ∙ 𝑎

Max. bending moment:

𝑉𝑎 = −𝑄

Max. shear forces:

Ra

M

V

Vc

q

Mmax(+)

l

parabolic

2 span continuous beam – Line load on 2 spans

𝑅𝑎 = 𝑅𝑐 =
3

8
𝑞 ∙ 𝑙, 𝑅𝑏 =

5

4
𝑞 ∙ 𝑙

Reation forces:

𝑀𝑚𝑎𝑥 =
9

128
∙ 𝑞 ∙ 𝑙2, 𝑀𝑏 = −

1

8
∙ 𝑞 ∙ 𝑙2

Bending moments:

𝑉𝑎 = 𝑉𝑐 =
3

8
𝑞 ∙ 𝑙, 𝑉𝑏 =

5

8
𝑞 ∙ 𝑙

Shear forces:

M

V

Rc

q

l

2 span continuous beam – Line load on 1 span

𝑅𝑎 =
7

16
𝑞 ∙ 𝑙, 𝑅𝑏 =

5

4
𝑞 ∙ 𝑙,

𝑅𝑐 = −
1

16
𝑞 ∙ 𝑙

Reation forces:

𝑀𝑚𝑎𝑥 =
49

512
∙ 𝑞 ∙ 𝑙2, 𝑀𝑏 = −

1

16
∙ 𝑞 ∙ 𝑙2

Max. bending moment:

𝑉𝑎 = 𝑅𝑎, 𝑉𝑏 = −
9

16
𝑞 ∙ 𝑙, 𝑉𝑐 = −𝑅𝑐

Shear forces:
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parabolic

b a

linear

Ma

For more moment and shear force formulas of the cantilever beam click here.

Mb(-)

++
-

Rb Rcl

Vb

Va

Mmax(+)

Mb(-)

+

-

Vc

Vb

Va

l

For more moment and shear force formulas of the 2 span continuous beam click here.

RbRa

https://www.structuralbasics.com/cantilever-beam-moment-and-shear-force-formulas-due-to-different-loads/
https://www.structuralbasics.com/2span-continuous-beam-formulas/


STATICS
3 span continuous beam – Line load on 3 spans

l

M

V

q

Ra

Vd

𝑅𝑎 = 𝑅𝑑 = 0.4 ∙ 𝑞 ∙ 𝑙, 
𝑅𝑏 = 𝑅𝑐 = 1.1 ∙ 𝑞 ∙ 𝑙

Reation forces:

𝑀𝑚𝑎𝑥 = 0.08 ∙ 𝑞 ∙ 𝑙2, 𝑀𝑏 = −0.1 ∙ 𝑞 ∙ 𝑙2
Bending moment:

𝑉𝑎 = 𝑉𝑑 = ±0.4 ∙ 𝑞 ∙ 𝑙 ,
𝑉𝑏 − = −𝑉𝑐 + = −0.6 ∙ 𝑞 ∙ 𝑙 ,

𝑉𝑏 + = −𝑉𝑐 − = 0.5 ∙ 𝑞 ∙ 𝑙

Shear forces:

Ra

M

V

q

Mmax(+)

3 span continuous beam – Line load on 2 spans

Reation forces:

𝑀𝑚𝑎𝑥 = 0.074𝑞𝑙2, 𝑀𝑏 = −0.117𝑞𝑙2,
𝑀𝑏𝑐 = 0.053𝑞𝑙2, 𝑀𝑐 = −0.033𝑞𝑙2

Bending moments:

Shear forces:

M

V

q

l

3 span continuous beam – Line load on 1 span
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parabolic

Mb(-)

++
-

Rb Rc l

Mmax(+)

Mb(-)

+
-

Vd

VbVa

l

For more moment and shear force formulas of the 3 span continuous beam click here.

l lRb Rc Rd

Mmax(+)

Mb(-)

+ + +
- -

Va

Vb Vc

VdVa

Vb Vc

-

Rdll

𝑅𝑎 = 0.383 ∙ 𝑞 ∙ 𝑙, 𝑅𝑏 = 1.2 ∙ 𝑞 ∙ 𝑙, 
𝑅𝑐 = 0.45 ∙ 𝑞 ∙ 𝑙, 𝑅𝑑 = −0.033 ∙ 𝑞 ∙ 𝑙

𝑉𝑎 = 0.383 ∙ 𝑞 ∙ 𝑙 , 𝑉𝑑 = 0.033 ∙ 𝑞 ∙ 𝑙
𝑉𝑏 − = −0.617𝑞𝑙 , 𝑉𝑏 + = −0.583𝑞𝑙

𝑉𝑐 − = −0.417𝑞𝑙, 𝑉𝑐 + = 0.033𝑞𝑙

Mc(-)

Mbc(+)

lRa Rb Rc Rd

Mc(+)

Vc

Reation forces:

𝑀𝑚𝑎𝑥 = 0.094𝑞𝑙2, 𝑀𝑏 = −0.067𝑞𝑙2,
𝑀𝑐 = 0.017𝑞𝑙2

Bending moments:

𝑅𝑎 = 0.433 ∙ 𝑞 ∙ 𝑙, 𝑅𝑏 = 0.65 ∙ 𝑞 ∙ 𝑙, 
𝑅𝑐 = −0.1 ∙ 𝑞 ∙ 𝑙, 𝑅𝑑 = 0.017 ∙ 𝑞 ∙ 𝑙

https://www.structuralbasics.com/3-span-continuous-beam/
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Centroid
The centroid is a point of a cross-section that represents the center of mass. It’s the 
point at which the entire area of the section can be assumed to be concentrated.

centroid

z

𝑧 =
σ𝑖=1
𝑛 𝐴𝑖 ∙ 𝑧𝑖

𝐴

1

2

z1

z2

Moment of inertia
The moment of inertia is a measure of an object’s resistance to changes in rotational 
motion. It is used to calculate the bending stresses that a structural element will 
experience when subjected to a load.

c

1

2

z1

z2

𝐴1

𝐴2

𝐼 =෍

𝑖=1

𝑛

𝐼0.𝑖 + 𝐴𝑖 ∙ 𝑧𝑖
2

With, 

n number of “parts” of the cross-section (n=2 in the shape above)
I0.i moment of inertia of part i
Ai area of the part i
zi distance of the centroid of part i from the centroid c

With, 

n number of “parts” of the cross-section (n=2 in the shape above)
Ai area of the part i
zi distance of the centroid of part i from the point of origin (top fibre in 

the shape above)
A area of the section
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Section modulus

centroid

𝑊 =
𝐼

𝑧1

1

2

z1

With, 

I moment of inertia around strong axis
z distance of fibre from centroid

Section modulus of top fibre:

z2

𝑊 =
𝐼

𝑧2

Section modulus of bottom fibre:

Moment of inertia formulas

Rectangular section

𝑤

ℎ

𝐼𝑦 =
𝑤ℎ3

12

𝐼𝑧 =
ℎ𝑤3

12

𝑤

𝑡𝑤

𝑡𝑓

ℎ

I/H section

𝐼𝑦 =
𝑤ℎ3

12
-
(𝑤−𝑡𝑤)∙(ℎ−2𝑡𝑤)

3

12

𝐼𝑧 =
ℎ𝑤3

12
-
(𝑤−𝑡𝑤)

3∙(ℎ−2𝑡𝑤)

12

Hollow circular section Rectangular hollow section

𝐷

𝑑

𝐵

𝐻 ℎ

𝑏

𝐼𝑦 =
𝐵𝐻3 − 𝑏ℎ3

12

𝐼𝑧 =
𝐻𝐵3 − ℎ𝑏3

12

𝐼𝑦 =
(𝐷4 − 𝑑4) ∙ 𝜋

64

𝐼𝑧 =
(𝐷4 − 𝑑4) ∙ 𝜋

64

For more moment of inertia formulas of other sections click here.

https://www.structuralbasics.com/moment-of-inertia-formulas/


LOADS
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Overview of loads used in structural design

The “common” characteristic loads that are used in the structural design 
of buildings are:
• Dead load
• Live load
• Horizontal wind load on walls
• Wind loads on roofs
• Snow load
• Soil pressure
• Seismic load

Dead load

The dead load represents permanent loads, such as the self-weight of 
structural and non-structural building materials. The self-weight of a 
concrete slab, a timber truss roof and windows are examples of the dead 
load. The weight is calculated and then applied to the structural member 
that carries it.

Area dead load:

𝑔𝑘 = 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 ⋅ 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 [
𝑘𝑁

𝑚
]

Live load

The live load represents variable loads such as weight of people, furniture, 
cars, office equipment, etc. that can change over time. It’s an 
approximation for structural engineers to estimate the additional weight 
(excluding self-weight) that can act on structures due to different room 
categories.

You’ll find the values of the live load for different room classes in EN 1991-
1-1 Table 6.2 and the National Annex of your country.

Click here for the in-depth article. 

Click here for the in-depth article. 

https://www.structuralbasics.com/dead-load/
https://www.structuralbasics.com/live-load/
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Horizontal wind loads on walls

The horizontal wind load on buildings are split up in 4 or 5 areas (A, B, C, D, 
E) with different load values.

E

D
A

B

C

A
B

C

𝑤𝑘 = 𝑞𝑝 ⋅ 𝑐𝑝𝑒

Wind loads on walls:

With, 

qp peak velocity pressure
cpe pressure coefficient for each area according to EN 1991-

1-4 Table 7.1

Click here for step-by-step guide for the peak velocity pressure.
And here for the full calculation guide for horizontal wind loads.

LOADS

https://www.structuralbasics.com/peak-velocity-pressure/
https://www.structuralbasics.com/wind-load-calculation-on-walls/
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Wind loads on pitched roofs

The wind loads on pitched roofs are split up in 4 or 5 areas (F, G, H, I, (J)) 
with different load values.

𝑤𝑘 = 𝑞𝑝 ⋅ 𝑐𝑝𝑒

Wind loads on pitched roofs:

With, 

qp peak velocity pressure
cpe pressure coefficient for each area according to EN 1991-

1-4 Table 7.4a.

Click here for the calculation guide for wind loads on pitched roofs.

F

F
G

H

J
I

LOADS

https://www.structuralbasics.com/how-to-calculate-the-wind-load-of-a-pitched-roof/


Structural 
Basics

Wind loads on flat roofs

The wind loads on flat roofs are split up in 4 areas (F, G, H, I) with different 
load values.

𝑤𝑘 = 𝑞𝑝 ⋅ 𝑐𝑝𝑒

Wind loads on flat roofs:

With, 

qp peak velocity pressure
cpe pressure coefficient for each area according to EN 1991-

1-4 Table 7.2.

Click here for the calculation guide for wind loads on flat roofs.

G
F

H
F I

LOADS

https://www.structuralbasics.com/how-to-calculate-the-wind-loads-of-a-flat-roof/
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Snow loads on flat and pitched roofs

𝑠 = 𝜇𝑖 ⋅ 𝐶𝑒 ⋅ 𝐶𝑡 ⋅ 𝑠𝑘

The snow load on pitched and flat roofs is calculated as (EN 1991-1-3 (5.1)):

With, 

μi snow load shape coefficient
Ce exposure coefficient
Ct thermal coefficient
sk characteristic snow load value on ground

Click here for a calculation guide for snow loads on pitched roofs.
And here for flat roofs.

LOADS

https://www.structuralbasics.com/how-to-calculate-the-snow-load-of-a-pitched-roof/
https://www.structuralbasics.com/how-to-calculate-the-snow-load-of-a-flat-roof/
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Ultimate limit state (ULS)

෍

𝑗≥1

𝛾𝐺.𝑗 ⋅ 𝐺𝑘.𝑗 + 𝛾𝑄.1 ⋅ 𝑄𝑘.1 +෍

𝑖>1

𝛾𝑄.𝑖 ⋅ 𝜓0.𝑖 ⋅ 𝑄𝑘.𝑖

With, 

γG partial factor for permanent actions 
Gk characteristic value of permanent action (e.g. dead load)
γQ partial factor for variable actions 
Qk characteristic value of variable action (e.g. live, snow and 

wind load)
Ψ0 factor for combination value of a variable action

LOAD COMBINATIONS

Serviceability limit state (SLS)

Characteristic combination:

෍

𝑗≥1

𝐺𝑘.𝑗 + 𝑄𝑘.1 +෍

𝑖>1

𝜓0.𝑖 ⋅ 𝑄𝑘.𝑖

Frequent combination:

෍

𝑗≥1

𝐺𝑘.𝑗 + 𝜓1.1 ⋅ 𝑄𝑘.1 +෍

𝑖>1

𝜓2.𝑖 ⋅ 𝑄𝑘.𝑖

Quasi-permanent combination:

෍

𝑗≥1

𝐺𝑘.𝑗 +෍

𝑖≥1

𝜓2.𝑖 ⋅ 𝑄𝑘.𝑖

With, 

Ψ1 factor for frequent value of a variable action
Ψ2 factor for quasi-permanent value of a variable action
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Accidental limit state (ALS)

෍

𝑗≥1

𝐺𝑘.𝑗 + 𝐴𝑑 + ( 𝜓1.1 𝑜𝑟 𝜓2.1) ⋅ 𝑄𝑘.1 +෍

𝑖>1

𝜓2.𝑖 ⋅ 𝑄𝑘.𝑖

With, 

Ad design value of an accidental action
AEd design value of seismic action 

LOAD COMBINATIONS

Seismic combination:

෍

𝑗≥1

𝐺𝑘.𝑗 + 𝐴𝐸𝑑 +෍

𝑖≥1

𝜓2.𝑖 ⋅ 𝑄𝑘.𝑖

Full in-depth article about load combinations: here

https://www.structuralbasics.com/load-combinations/
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Bending verification

𝑓𝑚.𝑦.𝑑 = 𝑘𝑚𝑜𝑑

𝑓𝑚.𝑦.𝑘

𝛾𝑚

Design bending strengths (EN 1995-1-1 (2.17)):

With, 

Md design bending moment around y/z-axis
I moment of inertia around y/z-axis
h cross-sectional height
w cross-sectional width

𝑓𝑚.𝑧.𝑑 = 𝑘𝑚𝑜𝑑

𝑓𝑚.𝑧.𝑘

𝛾𝑚

Bending verification (EN 1995-1-1 (6.11) + (6.12))

Design bending stresses:

𝜎𝑚.𝑦.𝑑 =
𝑀𝑦.𝑑

𝐼𝑦
⋅
ℎ

2

𝜎𝑚.𝑧.𝑑 =
𝑀𝑧.𝑑

𝐼𝑧
⋅
𝑤

2

With, 

kmod modification factor (EN 1995-1-1 Table 3.1)
fm.k characteristic bending strength of timber material
γm partial factor (EN 1995-1-1 Table 2.3)

𝜎𝑚.𝑦.𝑑

𝑓𝑚.𝑦.𝑑
+ 𝑘𝑚 ⋅

𝜎𝑚.𝑧.𝑑

𝑓𝑚.𝑧.𝑑
≤ 1

𝑘𝑚 ⋅
𝜎𝑚.𝑦.𝑑

𝑓𝑚.𝑦.𝑑
+
𝜎𝑚.𝑧.𝑑

𝑓𝑚.𝑧.𝑑
≤ 1

𝑘𝑚 = 0.7/1.0 EN 1995-1-1 6.1.6 (2)
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Shear verification

𝑓𝑣.𝑑 = 𝑘𝑚𝑜𝑑

𝑓𝑣.𝑘
𝛾𝑚

Design shear strengths (EN 1995-1-1 (2.17)):

With, 

Vd design shear force
h cross-sectional height
w cross-sectional width

Shear verification (EN 1995-1-1 (6.13))

Design shear stress:

𝜏𝑣.𝑑 =
3

2
⋅
𝑉𝑑
𝑤 ⋅ ℎ

With, 

kmod modification factor (EN 1995-1-1 Table 3.1)
fv.k characteristic shear strength of timber material
γm partial factor (EN 1995-1-1 Table 2.3)

𝜏𝑣.𝑑
𝑓𝑣.𝑑

≤ 1

TIMBER DESIGN
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Compression verification (columns)

𝑓𝑐.0.𝑑 = 𝑘𝑚𝑜𝑑

𝑓𝑐.0.𝑘
𝛾𝑚

Design compression strength – parallel to grain (EN 1995-1-1 (2.17)):

With, 

Nd design normal force
h cross-sectional height
w cross-sectional width

Compression verification (EN 1995-1-1 (6.2))

Design compression stress:

𝜎𝑐.0.𝑑 =
𝑁𝑑
𝑤 ⋅ ℎ

With, 

kmod modification factor (EN 1995-1-1 Table 3.1)
fc.0.k characteristic compression strength parallel to grain
γm partial factor (EN 1995-1-1 Table 2.3)

𝜎𝑐.0.𝑑
𝑓𝑐.0.𝑑

≤ 1

TIMBER DESIGN
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Buckling verification (columns)

𝑖 =
𝐼

𝑤 ⋅ ℎ

With, 

fc.0.k characteristic compression strength parallel to grain
E0.g.05 E-modulus parallel to grain, 5% fractile
I moment of inertia
h cross-sectional height
w cross-sectional width

Buckling length:

Radius of inertia:

Slenderness ratio:

Relative slenderness ratio (EN 
1995-1-1 (6.21)):

βc factor (EN 1995-1-1 (6.29))

Instability factor (EN 1995-1-1 
(6.27))

Buckling reduction factor 
coefficient (EN 1995-1-1 (6.25))

Utilization check one axial 
bending (EN 1995-1-1 (6.23))

𝑙

𝜆 =
𝑙

𝑖

𝜆𝑟𝑒𝑙.𝑦 =
𝜆

𝜋
⋅

𝑓𝑐.0.𝑘
𝐸0.𝑔.05

𝛽𝑐

𝑘 = 0.5 ⋅ (1 + 𝛽𝑐 ⋅ 𝜆𝑟𝑒𝑙.𝑦 − 0.3 + 𝜆𝑟𝑒𝑙.𝑦
2 )

𝑘𝑐 =
1

𝑘 + 𝑘2 − 𝜆𝑟𝑒𝑙.𝑦
2

𝜎𝑐.0.𝑑
𝑘𝑐 ⋅ 𝑓𝑐.0.𝑑

+
𝜎𝑚.𝑑

𝑓𝑚.𝑑
≤ 1

TIMBER DESIGN
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Material properties

𝜌 = 7850
𝑘𝑔

𝑚3

E-modulus:

Density:

Poissons ratio:

Shear modulus:

Yield and ultimate strength:

𝐸 = 0.21 ∙ 106𝑀𝑃𝑎

𝜈 = 0.3

𝐺 =
𝐸

2 ⋅ (1 + 𝜈)

Check out the tables on Eurocodeapplied.com (link) 

Strength properties of bolts (EN 1993-1-8 Table 3.1)

Bolt class

Property 4.6 4.8 5.6 5.8 6.8 8.8 10.9

Yield strength fyb (MPa) 240 320 300 400 480 640 900

Ultimate tensile 
strength fub (MPa)

400 400 500 500 600 800 1000

Ultimate tensile strength of 
welds:

Correlation factor 
(dependent on steel strength 
(EN 1993-1-8 Table 4.1)

fu = fu of the weaker steel plate

𝛽0

𝑓𝑦, 𝑓𝑢

STEEL DESIGN

https://eurocodeapplied.com/design/en1993/steel-design-properties
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Geometric properties

You can find these and many more parameters on Eurocodeapplied.com
(link)

Bolt nominal diameter:

Bolt Hole diameter:

Stress area (threaded part of 
bolt):

You can find these and many more parameters on Eurocodeapplied.com
(link)

Weld throat thickness:

Cross-sectional height:

Cross-sectional width:

Web thickness:

Flange thickness:

Root radius:

𝑤

ℎ

𝑡𝑤

𝑡𝑓

𝑟

𝑑

𝑑0

𝐴𝑠

𝑎

STEEL DESIGN

https://eurocodeapplied.com/design/en1993/ipe-hea-heb-hem-design-properties
https://eurocodeapplied.com/design/en1993/bolt-design-properties
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ULS compression verification

Compressive design 
resistance (EN 1993-1-1 (6.10)):

𝑁𝑐.𝑅𝑑 =
𝐴 ⋅ 𝑓𝑦

𝛾𝑀0

With, 

A full/effective cross-sectional area depending on the cross-
section class 

fy steel yield strength
γM0 partial factor

Compression verification 
(EN 1993-1-1 (6.9):

𝑁𝐸𝑑
𝑁𝑐.𝑅𝑑

≤ 1.0

With, 

NEd design compression force (normal force)

ULS bending verification

Bending design resistance 
(EN 1993-1-1 (6.13)):

𝑀𝑐.𝑅𝑑 =
𝑊𝑝𝑙 ⋅ 𝑓𝑦

𝛾𝑀0

With, 

Wpl plastic section modulus (cross-section classes 1+2). You 
can find the value here. 

Bending verification 
(EN 1993-1-1 (6.12):

𝑀𝐸𝑑

𝑀𝑐.𝑅𝑑
≤ 1.0

With, 

MEd design bending moment

STEEL DESIGN
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ULS shear verification

Shear design resistance 
(EN 1993-1-1 (6.18)):

𝑉𝑝𝑙.𝑅𝑑 = 𝐴𝑣

𝑓𝑦

3
𝛾𝑀0

With, 

Av shear area. You can find the values here.

Shear verification 
(EN 1993-1-1 (6.17):

𝑉𝐸𝑑
𝑉𝑐.𝑅𝑑

≤ 1.0

With, 

VEd design shear force

Check if shear buckling 
verification is required
(EN 1993-1-1 (6.22)):

ℎ𝑤
𝑡𝑤

≤ 72 ⋅
𝜀

𝜂

𝜀 ≤
235𝑀𝑃𝑎

𝑓𝑦

𝜂 ≤ 1.0

STEEL DESIGN
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Reduction factors 
(EN 1993-1-1 (6.49)):

Design buckling resistance 
(EN 1993-1-1 (6.47))

Utilization check 
(EN 1993-1-1 (6.46))

𝜙 = 0.5 ⋅ (1 + 𝛼 ⋅ 𝜆 − 0.2 + 𝜆2))

𝜒 =
1

𝜙 + 𝜙2 − 𝜆2

𝑁𝐸𝑑
𝑁𝑏.𝑅𝑑

≤ 1

𝑁𝑏.𝑅𝑑 =
𝜒 ⋅ 𝐴 ⋅ 𝑓𝑦

𝛾𝑀1

With, 

A full/effective cross-sectional area depending on the cross-
section class

𝑖 =
𝐼

𝑤 ⋅ ℎ

Buckling length:

Radius of inertia:

Slenderness (EN 1993-1-1 
6.3.1.3 (1)):

Non-dimensional slenderness:

Buckling curve (EN 1993-1-1 
Table 6.1):

𝑙

𝜆1 = 𝜋
𝐸

𝑓𝑦

𝜆 =
𝑙

𝑖
⋅
1

𝜆1

𝛼

ULS flexural buckling verification (columns)

STEEL DESIGN
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Normal stress perpendicular 
to throat:

Shear stress parallel to the 
axis of weld:

Shear stress perpendicular to 
the axis of weld:

𝜎90 =
𝑁

2 ⋅ 𝑙𝑒𝑓𝑓 ⋅ 𝑎 ⋅ 2
+

𝑀

2 ⋅ 𝑙𝑒𝑓𝑓
2 ⋅

𝑎
6
⋅ 2

𝜏90 = 𝜎90

Fillet weld design – directional method

𝜏0 =
𝑉

2 ⋅ 𝑙𝑒𝑓𝑓 ⋅ 𝑎

𝜎90

𝜏0

𝜏90

𝑁
𝑀

𝑉

Verification criteria 1 
(EN 1993-1-8 (4.1)):

Verification criteria 2 
(EN 1993-1-8 (4.1)):

𝜎90
2 + 3(𝜏0

2 + 𝜏90
2 ) ≤

𝑓𝑢
𝛽𝑤 ⋅ 𝛾𝑀2

𝜎90 ≤ 0.9
𝑓𝑢
𝛾𝑀2

STEEL DESIGN
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Normal stress in weld:

Shear stress in weld:

Shear stress perpendicular to 
the axis of weld:

Resulting stress:

Resistance stress:

Utilization check 
(EN 1993-1-8 (4.2)): 

𝜎𝑁 =
𝑁

𝑙𝑤 ⋅ 𝑎
+
𝑀

𝑊

𝐹𝑤.𝑅𝑑 =
𝑓𝑢

3 ⋅ 𝛽𝑤 ⋅ 𝛾𝑀2

Fillet weld design – simplified method

𝐹𝑤.𝐸𝑑 = 𝜎𝑁
2 + 𝜏𝑣

2

With, 

lw length of weld
W section modulus of weld

𝜏𝑣 =
𝑉𝑑

𝑙𝑤 ⋅ 𝑎

𝐹𝑤.𝐸𝑑 ≤ 𝐹𝑤.𝑅𝑑

Full in-depth article about fillet weld design here.

STEEL DESIGN

https://www.structuralbasics.com/fillet-weld-design/
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Material properties

𝑓𝑐𝑘

E-modulus concrete 
(dependent on concrete 
strength class):

Partial factor – concrete:

Partial factor – reinforcement:

Characteristic cylinder 
compressive strength:

Design compressive strength:

Mean tensile concrete 
strength:

Design tensile strength:

Yield strength of 
reinforcement:

Design yield strength:

𝐸

You can find the values of these properties on Eurocodeapplied.com 
(link) 

𝑓𝑦𝑘

𝑓𝑐𝑡𝑚

𝑓𝑐𝑑 =
𝑓𝑐𝑘
𝛾𝑐

𝑓𝑐𝑡𝑑 =
𝑓𝑐𝑡𝑚
𝛾𝑐

𝑓𝑦𝑑 =
𝑓𝑦𝑘

𝛾𝑠

𝛾𝑠

𝛾𝑐

RC DESIGN

https://eurocodeapplied.com/design/en1992/concrete-design-properties
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Lever arm of longitudinal 
reinforcement to compression 
fibre

Required longitudinal 
reinforcement:

Degree of reinforcement 
checks:

Check 1: 

Check 2:

𝑑

ULS Bending verification

𝜇 =
𝑀𝑑

𝑤 ⋅ 𝑑2 ⋅ 𝜂 ⋅ 𝑓𝑐𝑑

𝜔 = 1 − 1 − 2 ⋅ 𝜇

𝐴𝑠.𝑟𝑒𝑞 = 𝜔 ⋅
𝑤 ⋅ 𝑑 ⋅ 𝜂 ⋅ 𝑓𝑐𝑑

𝑓𝑦𝑑

With, 

Md bending moment
w width of RC beam
𝜂 factor dependent on concrete class

𝜔𝑚𝑖𝑛 = max(0.26
𝑓𝑐𝑡𝑚
𝑓𝑦𝑘

⋅
𝑓𝑦𝑑

𝑓𝑐𝑑
; 0.0013

𝑓𝑦𝑑

𝑓𝑐𝑑
)

𝜔 > 𝜔𝑚𝑖𝑛

𝜔 < 𝜔𝑏𝑎𝑙

𝜔𝑏𝑎𝑙 = 𝜆
𝜀𝑐𝑢3

𝜀𝑐𝑢3 ⋅ 𝜀𝑦𝑑

𝜔𝑚𝑎𝑥 = 0.044
𝑓𝑦𝑑

𝜂 ⋅ 𝑓𝑐𝑑

RC DESIGN
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Check 3:

Minimum reinforcement (EN 
1992-1-1 9.2.1.1 (9.1N)):

𝐴𝑠.𝑚𝑖𝑛 = 𝑚𝑎𝑥 ቐ
0.26

𝑓𝑐𝑡𝑚
𝑓𝑦𝑘

⋅ 𝑤 ⋅ 𝑑

0.0013 ⋅ 𝑤 ⋅ 𝑑

𝜔 < 𝜔𝑚𝑎𝑥

𝜐𝑅𝑑.𝑐 = 𝑚𝑎𝑥

0.18

𝛾𝑐
⋅ 𝑘 ⋅ (100𝜌1 ⋅ 𝑓𝑐𝑘)

1
3

0.051

𝛾𝑐
⋅ 𝑘

3
2 ⋅ 𝑓𝑐𝑘

ULS Shear verification

First, check if shear reinforcement is required.

Members not requiring design shear reinforcement

EN 1992-1-1 6.2.2 (1):

Design value of shear 
resistance (EN 1992-1-1 
(6.2.a)):

Shear reinforcement required 
if:

𝑘 = 1 +
200

𝑑
𝑚𝑚

𝜌1 = min(
𝐴𝑠

𝑤 ⋅ 𝑑
; 0.02)

𝑉𝑅𝑑.𝑐 = 𝜐𝑅𝑑.𝑐 ⋅ 𝑤 ⋅ ℎ

𝑉𝐸𝑑 > 𝑉𝑅𝑑.𝑐

With, 

h height of RC beam
VEd width of RC beam

RC DESIGN
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EN 1992-1-1 Figure 6.5

Coefficient taking into 
account state of stress in 
compression chord:

Strength reduction factor for 
concrete cracked in shear (EN 
1992-1-1 (6.9)):

Angle between concrete 
compression strut and beam 
axis perp. to shear force: 

Shear resistance (EN 1992-1-1 
(6.9)):

Verification

Reduction of design yield 
strength of reinforcement (EN 
1992-1-1 (6.8)):

Shear links (EN 1992-1-1 (6.8)):

Inclination of shear 
reinforcement:

Max. spacing (EN 1992-1-1 
(9.6N)):

𝑧 = 0.9 ⋅ 𝑑

Members requiring design shear reinforcement

𝛼𝑐𝑤

𝜐1

𝑉𝑅𝑑.𝑚𝑎𝑥 = 𝛼𝑐𝑤 ⋅ 𝑤 ⋅ 𝑧 ⋅ 𝜐1 ⋅
𝑓𝑐𝑑

cot 𝜃 + tan 𝜃

𝜂 =
𝑉𝐸𝑑

𝑉𝑅𝑑.𝑚𝑎𝑥

𝛼

𝑓𝑦𝑤𝑑 = 0.8 ⋅ 𝑓𝑦𝑘

𝐴𝑠𝑤 =
𝑉𝐸𝑑

𝑧 ⋅ 𝑓𝑦𝑤𝑑 ⋅ cot(𝜃 )

𝜃

𝑠𝑙.𝑚𝑎𝑥 = 0.75 ⋅ 𝑑 ⋅ (1 + cot 𝛼 )

RC DESIGN
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Crack width limit (EN 1992-1-1 
Table 7.1N)

Final creep coefficient

E-modulus of concrete long-
term (quasi-permanent):

Long-term steel-concrete 
ratio:

Equilibrium of 1. moment of 
area:

Neutral axis (solving for x):

𝑤𝑚𝑎𝑥

SLS Crack width verification

𝜙

𝐸𝑐.𝑒𝑓𝑓 =
𝐸𝑐𝑚
1 + 𝜙

𝛼𝑠 =
𝐸𝑠

𝐸𝑐.𝑒𝑓𝑓

x

Fc

Fs

d
d – x/3

𝑤 ⋅ 𝑥 ⋅
𝑥

2
= 𝛼𝑠 ⋅ 𝐴𝑠 ⋅ (𝑑 − 𝑥)

𝑥 =
𝛼𝑠 ⋅ 𝐴𝑠
𝑤

⋅ (−1 + 1 +
2 ⋅ 𝑤 ⋅ 𝑑

𝛼𝑠 ⋅ 𝐴𝑠
)

RC DESIGN
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Stress in reinforcement:

Factor dependent on duration 
of load (EN 1992-1-1)

Effective height (EN 1992-1-1 
(7.3.2 (3)):

.

EN 1992-1-1 (7.9):

Coefficient (EN 1992-1-1 (7.11))

Coefficient (EN 1992-1-1 (7.11))

Max. cracking spacing:

Verification:

𝜎𝑠 =
𝑀𝑞𝑝

𝑑 −
𝑥
3

⋅ 𝐴𝑠

𝑘𝑡

𝑓𝑐𝑡.𝑒𝑓𝑓 = 𝑓𝑐𝑡𝑚

ℎ𝑐.𝑒𝑓𝑓 = min(2.5 ⋅ ℎ − 𝑑 ;
ℎ − 𝑥

3
;
ℎ

2
)

𝑠𝑟.𝑚𝑎𝑥 = 3.4 ⋅ 𝑐 + 0.425 ⋅ 𝑘1 ⋅ 𝑘2 ⋅
𝑑𝑠

𝜌𝑝.𝑒𝑓𝑓

𝑠𝑟.𝑚𝑎𝑥 < 5 ⋅ (𝑐 +
𝑑𝑠
2
)

𝜀𝑠𝑚 − 𝜀𝑐𝑚 = max

𝜎𝑠 − 𝑘𝑡 ⋅
𝑓𝑐𝑡.𝑒𝑓𝑓
𝜌𝑝.𝑒𝑓𝑓

⋅ (1 + 𝛼𝑠 ⋅ 𝜌𝑝.𝑒𝑓𝑓)

𝐸𝑠

0.6 ⋅
𝜎𝑠
𝐸𝑠

𝜌𝑝.𝑒𝑓𝑓 =
𝐴𝑠

ℎ𝑐.𝑒𝑓𝑓 ⋅ 𝑤

𝑘1

𝑘2

RC DESIGN
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Crack width:

Utilization:

𝑤𝑘 = 𝑠𝑟.𝑚𝑎𝑥 ⋅ (𝜀𝑠𝑚 − 𝜀𝑐𝑚)

𝜂 =
𝑤𝑘

𝑤𝑚𝑎𝑥

SLS Deflection verification

The deflection calculation of reinforced concrete elements is not as 
straightforward as for timber or steel structures. However, according 
to Eurocode EN 1992-1-1 the deflection requirement is likely to be 
satisfied if the span – effective depth ratio is less than the values given 
in EN 1992-1-1 Table 7.4N.

Click here for a reinforced concrete beam design guide.

RC DESIGN

https://www.structuralbasics.com/reinforced-concrete-beam/
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