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h i g h l i g h t s

� High-performance fiber reinforced concrete (HPFRC) is reported as repairing material to normal concrete (NC).
� HPFRC and NC samples are manufactured and experimentally calibrated.
� HPFRC-NC debonding test is conducted under direct shear load.
� A machine learning model is developed to predicted the shear debonding behavior of HPFRC-NC.
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High-performance fiber reinforced concrete (HPFRC) has been reported as a repairing material to normal
concrete (NC) structures due to its predominant mechanical performance. Here, we investigate the
debonding behavior between HPFRC and NC subjected to direct shear loading. HPFRC specimens are fab-
ricated and experimentally calibrated to determine the compressive and bending (i.e., flexural) strengths.
HPFRC-NC samples are fabricated using two bonding strategies, i.e., mechanical surface treatments with
and without chemical agent. Direct shear loading is applied to test the HPFRC-NC debonding behavior. A
finite element (FE) model is developed to predict the direct shear debonding response. The FE model is
validated by the experimental observations and then used to characterize the debonding behavior with
various geometric and material parameters, as well as bonding interface treatments. Subsequently, a
robust machine learning model is developed to formulate the shear debonding strength of HPFRC-NC
with those influencing parameters. Design examples are presented to illustrate the efficiency of the pro-
posed machine learning model in describing the debonding response of HPFRC-NC. A sensitivity analysis
is further conducted to investigate the contribution of the chosen predictors to the debonding behavior of
HPFRC-NC. The reported HPFRC and machine learning-based prediction model provide powerful tools to
address repairing issues in various existing normal concrete structures.

� 2019 Elsevier Ltd. All rights reserved.
1. Introduction

High-performance fiber reinforced concrete (HPFRC) is a special
class of fiber reinforced concrete (FRC), which shows promising
deflection-hardening behavior under deformation. The flexural
strength is similar to that of high-performance fiber reinforced
cementitious composites (HPFRCC) and engineered cementitious
composites (ECC), which is much higher than high-performance
concrete (HPC). The compressive strength of HPFRC is higher than
that of HPFRCC, ECC, and HPC, but is lower than ultra-high-
performance concrete (UHPC) [38]. By virtue of its improved
mechanical behaviors and enhanced bond properties [38,36],
HPFRC has the potential to be used as an effective repairing mate-
rial to existing concrete structures. For example, the loading capac-
ity and the durability of concrete members are significantly
impacted by corrosion of steel rebar due to chloride and moisture
penetrations through cracks. Those corroded rebars lead to the
degradations in concrete members and therefore, aggravate the
risk of structural failure. To demonstrate the advanced
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Fig. 1. (a) Components of HPFRC. (b) Constant speed mixer. (c) Temperature-
controlled double-walled tanks.
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performance of HPFRC in civil infrastructures, research efforts have
been dedicated to understanding: a) mechanical behavior of the
material under different loading conditions, and b) bonding/
debonding response between HPFRC (as a repairing agent) and
existing, damaged normal concrete.

Studies have been conducted to characterize the mechanical
response of HPFRC subjected to different loading conditions, e.g.,
pure axial loading [19], high strain rates [46], blast loading [6],
and seismic loading [28]. Pourbaba et al. [33] experimentally
investigated the effect of aging on compressive strength of HPFRC
columns. Nonlinear finite element analysis was carried out to
reveal the flexural behavior of HPFRC beams by Yoo et al. [51].
Zhou and Uchida [54] examined the effect of fibers on the post-
cracking response of HPFRC, and quantitatively evaluated the
impacts of fiber orientation and distribution. Xia et al. [49] pre-
sented a size-independent constitutive model to study crack prop-
agation of HPFRC for sectional flexural analysis. Many studies have
also been carried out to investigate the mechanical response of
concrete structures that use HPFRC as a repairing material, e.g.,
flexural behavior [40,5], tensile properties [39], and seismic behav-
ior [20]. Tayeh et al. [45] experimentally characterized the bonding
behavior between existing concrete substrates and HPFRC repair
materials. Li et al. [23] studied the mechanical behavior of dam-
aged reinforced concrete (RC) repaired by HPFRCC and proposed
a repairing technique for RC columns damaged in earthquake.
Other than characterizing the mechanical properties of HPFRC as
a repairing material, it is also of interest to accurately predict the
repairing behavior of HPFRC under different loading conditions.

Precisely predicting the mechanical performance of HPFRC-
repaired concrete structures is required in different applications
such as many design practices and scheduling operations in civil
constructions. To obtain the mechanical behavior, i.e., compressive
strength or debonding limit, studies have been reported on predic-
tion models developed using experimental, numerical or theoreti-
cal approaches [10]. Radtke et al. [34] proposed a computational
model to describe the failure processes of HPFRC, which led to a
discrete approach to investigate the effect of fiber distribution on
the behavior of the material. A dynamic mesoscale model was
developed to quantify the energy dissipation of HPFRC under rapid
loading [13]. The authors took into account three constituent com-
ponents, namely reinforcement fibers, cementitious matrix, and
fiber–matrix interfaces. Yoo et al. [52] studied the effect of micro-
scale steel fibers on the interfacial bonding behavior between
HPFRC and normal concrete. Lampropouros et al. (2015) developed
a finite element (FE) model based on the tensile and compressive
strength experiments between UHPFRC and existing reinforced
concrete (RC). Traditional regression techniques have been exten-
sively used to develop prediction models for mechanical properties
of various types of concrete. However, traditional regression
requires to define the functional representation of the model in
advance, which, arguably, is not an optimal solution for mechanical
parameters that involve high nonlinearities [2]. In recent years,
machine learning (ML) approaches, a subdivision of artificial intel-
ligence inspired by biological learning processes, have been exten-
sively applied as a prominent empirical regression tool to address
issues in civil engineering design [22,3]. ML methods can particu-
larly learn the underlying behavior of a system from sets of train-
ing data without clarifying the relationship between those data.
Therefore, an ML-based prediction model does not need to have
predefined functional representation of the model. Powerful ML
techniques such as genetic programming (GP), artificial neural net-
works (ANN), support vector machines (SVM), and decision model
tree have been successfully deployed to solve various civil engi-
neering problem, such as mechanical characterization of high-
performance concrete [3,27,9,43,44]. One of the main advantages
of GP and its branches over other ML methods (e.g., ANN, SVM)
is that they can generate a transparent and structured representa-
tion of the system being studied.

In this study, we first experimentally characterize the effect of
granular mixture on the mechanical behavior of the HPFRC-
repaired normal concrete samples (i.e., HPFRC-NC). Based on the
experimental results, a FE model is developed to foresee the
debonding response of HPFRC-NC. In addition, we propose a novel
strategy for the calibration of the ML algorithm. To this aim, the FE
simulation results are thoroughly validated by the experimental
observations. The calibrated FE models are then used to character-
ize the debonding behavior with respect to various geometric and
material parameters, as well as the bonding interface treatments of
HPFRC-NC. The developed database is utilized to train and estab-
lish a ML prediction model for the shear debonding strength of
HPFRC-NC. The advantage of this strategy is that it eliminates the
necessity of performing costly and time-consuming experiments
that are typically required to create large database for calibrating
ML models. Additionally, it provides a useful tool to investigate
the effect of parameters on the debonding response between
HPFRC and NC, which might not be easily plausible via laboratory
testing.

The rest of the paper is organized as: Section 2 presents the
HPFRC-NC debonding tests. The HPFRC specimens are first fabri-
cated and calibrated to determine the mechanical properties.
Debonding tests are then designed and carried out under direct
shear loading. Section 3 proposes the numerical simulations of
the debonding behavior. A concrete damage plasticity (CDP) model
is developed in Abaqus, and the finite element (FE) predictions are
validated by the experimental results. Section 4 develops an ML
prediction model to formulate the shear debonding strength with
the mixture proportions. Section 5 summarizes the main findings
in this study. In Appendix, raw data of HPFRC-NC are provided.
2. HPFRC-NC shear debonding tests

2.1. Fabrication and experimental calibration of HPFRC

Fig. 1 presents the fabrication process of HPFRC. Fig. 1(a) shows
the components of HPFRC, including portland cement, sand, steel



Table 1
The geometric properties and loading conditions of the HPFRC specimens in the
compression and bending tests.

Parameter Value

Compression test Diameter (mm) 76
Height (mm) 152
Loading speed (mm/s) 0.05

Bending test Width (mm) 76
Height (mm) 76
Length (mm) 285
Span bt. supports (mm) 241
Loading speed (mm/s) 0.015
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fibers, Sil-co-Sil 90 (SCS), silica fume (SF), Glenium 7500 (Glnm),
RheoTEC (RhTC), and water. In particular, type I portland cement
conforming to ASTM C150 (i.e., Standard Specification for Portland
Cement) was deployed with two types of fine natural sands (i.e.,
Sand OO and Sand OOO). Straight-drawn discontinuous steel fibers
(OL 13/0.20) were used to increase the post-cracking ductility of
HPFRC, as detailed in Fig. 1(a). SCS, containing crystalline silica
(mineral quartz), was added as the third constituent in the fine
aggregate category, while no coarse aggregate was used. Densified
SF (i.e., Rheomac SF 100) was added as the mineral admixture, and
high range water reducing admixture (i.e, Glnm) and workability
retaining admixture (i.e., RhTC) were added as the chemical admix-
tures. To prevent HPFRC from overheating during mixing, cold and
potable water (�10 �C) was used, and the mixing time was more
than that of the conventional concrete. See Appendix A for detailed
material properties of the components in HPFRC.

Fig. 1(b) shows the 3-speed mixer with the capacity of 28.4 L
used to mix HPFRC under the constant speed of 91 rpm. The mixing
process can be summarized as: a. All the constituent materials
were first weighed. b. Three different types of fine aggregates
(i.e., Sand OO, Sand OOO, and Sil-co-sil 90) and silica fume were
added to the bowl and mixed for 3 mins. c. Portland cement was
added to the bowl and mixed for 3 mins. d. Water was added to
the dry mix over a course of 30 s and the mixing was continued
for 3 mins. e. Glnm and RhTC were then added and the mixing
was continued until the mix turned to a thick paste. This process
typically took 2 mins. f. Steel fibers were added to the paste and
the mixer machine was continued to run (for about 2 mins) till
the fibers were properly dispersed in the matrix. The prepared
HPFRC was then poured into the molds. After 24 h of casting, the
specimens were demolded and placed under water in a custom
designed temperature controlled double-walled tank at 55 �C until
1 day before testing. The mixing procedure and the curing condi-
tions have been explained in detail in Roy [37] and Roy et al.
[38]. Fig. 1(c) displays the temperature-controlled double-walled
tanks.

To investigate the mechanical response of HPFRC, two types of
mechanical tests were carried out, viz., compression and 3-point
bending tests (as shown in Fig. 2). Fig. 2(a) presents the compres-
sion test. HPFRC cylinders were poured in the plastic cylindrical
molds, which were then loaded using a 1000 KN MTS machine to
measure the compressive stiffness. Displacement-control loading
procedures were designed with a constant rate of 0.05 mm/s.
Fig. 2(b) displays the 3-point bending test. The HPFRC beams were
made in steel prismatic molds and the same MTS machine was
Fig. 2. (a) HPFRC specimens and the experimental setup for compressive stiffness
test. (b) HPFRC specimens and the experimental setup for bending stiffness test.
used for the 3-point bending experiments. The specimens were
loaded with the constant displacement rate of 0.015 mm/s [37].
The geometric properties and loading conditions of the HPFRC
samples in the compression and bending tests are summarized in
Table 1.

Fig. 3 displays the failure of the concrete samples in the com-
pression and bending tests. Due to the incorporation of steel fibers
in HPFRC, the broken configuration of cylinders in the compression
test was approximately in the loading direction rather than �45�
from the principal plane, as shown in Fig. 3(a). Similar findings
were obtained from the 3-point bending test for the bending stiff-
ness, as presented in Fig. 3(b). Fig. 4 presents the mechanical per-
formance of HPFRC calibrated in the experiments. Fig. 4(a) exhibits
the compressive stiffness of the high-performance concrete, which
first exhibits a linearly increasing force–displacement relationship
with the spring constant K inc. A sharp dropping of debonding resis-
tance is obtained after the concrete -reaches the maximum axial
force Fmax. Shortly after the significant dropping, HPFRC retains
the compression resistance with the spring constant Kdec, which
indicates the effectiveness of HPFRC’s repairing performance as
compared to high strength concrete without fiber, which shows a
brittle failure with a sharp decline of the force in the softening
regime. On the contrary, the bending stiffness in Fig. 4(b) shows
a bi-linearly increasing force–displacement curve with the stiff-
nesses K inc1 and K inc2 indicating the deflection hardening behavior
under flexure. However, it does not experience the critical drop-
ping region; instead, the force decreases almost linearly after the
maximum force Fmax is reached. Table 2 summarizes the mechan-
ical properties of HPFRC determined using experimental
calibration.
Fig. 3. Failure configurations of the HPFRC samples in (a) compression test and (b)
bending test.



Fig. 4. Axial force-displacement responses of HPFRC subjected to (a) compression
and (b) 3-point bonding experiments.

Table 2
Material properties of HPFRC.

Density (kg/m3) 2450

Young’s Modulus (MPa) 49,467
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2.2. HPFRC-NC shear debonding test

2.2.1. Design of debonding test
Butterfly-shaped specimens were used to test the debonding

behavior between HPFRC and NC, as shown in Fig. 5. The bonding
area was designed in the middle of the interface between the
wings. Fig. 5(a) illustrates a bi-layered HPFRC-NC sample under
shear force in the 3D perspective, and Fig. 5(b) and (c) indicate
Fig. 5. (a) Illustration of the designed butterfly-shaped HPFRC-NC sample for direct
shear debonding test in (a) 3D perspective, (b) side view, and (c) top view.
the geometries of the bonded sample in the side view and top view,
respectively.

Fig. 6(a) shows the manufacturing process of HPFRC-NC. The
manufacturing process is described below:

The bottom layer of the partitioned steel mold was assembled
and a mold releasing oil was applied. NC was then poured into
the bottom layer and the assembly was vibrated for 30 s. NC was
immediately covered with wet burlap and moist cured at 23 ± 2�
C. After 5–6 h of casting, the top surface of the substrate was ade-
quately roughened to attain a sufficient bond. Upon the completion
of the surface preparations, the specimens were further covered
with wet burlap and left in the same curing room for 24 h. After
removal of the burlap the exposed area of the top surface of the
substrate was reduced to a square section of 50 mm � 50 mm by
waterproof duct tape. The reduction in the bond areas was neces-
sary to guarantee the failure through the interface. A previous
study using similar shear apparatus [35] showed the area of failure
decides whether the failure will be cohesive or adhesive. The top
part of the steel mold was then assembled to facilitate to cast
the HPFRC on top of the NC. Before the casting of HPFRC, the NC
substrate was treated by two surface preparation methods as
follows:

� Case 1 (mechanical): The surface was mechanically roughened,
cleaned, and made ready for casting of HPFRC.

� Case 2 (mechanical/chemical): The mechanically roughened
substrate is further applied with two component epoxy-based
bonding agent at a prescribed rate recommended by the
manufacturer.

Finally, HPFRC was then poured at the top layer for both case I
and case II. The HPFRC was poured while the bonding agent was
still uncured (tacky). As soon as the casting is finished the entire
assembly including the molds and bi-layer specimens was covered
with wet burlap and kept in the curing room at 23 ± 2� C. After 24 h
the bi-layer specimens were removed from the molds and kept
under water at 55� C in the double-walled tanks. After 24 h the
specimens were removed and kept in air in the moist curing room
until the day of testing. This was done to make the interface (espe-
cially the epoxy treated interface) dry before testing. A step by step
information is provided in Roy [37] and Roy et al., [38]. Fig. 6(b)
demonstrates the manufactured bi-layered, butterfly-shaped
HPFRC-NC specimens. Fig. 7 presents the direct shear debonding
experiments of the HPFRC-NC specimens. Fig. 7(a) shows the test-
ing fixture designed by Ray et al. [35] for the butterfly-shaped con-
crete samples, which consists of the components of bolts, groove,
stepped plates, sliding side blocks, and end blocks. Fig. 7(b)
demonstrates the deployment of the concrete sample in the testing
fixture, and Fig. 7(c) indicates the debonding test subjected to
shear loading.

The loading speed was fixed as 0.05 mm/s. The fixture was
adjusted to tightly clamp the concrete samples and prevent possi-
ble motions in other directions. HPFRC and NC were only allowed
to move in the shear loading direction. Loading procedures con-
sisted of gradually applying the shear force and the resultant dis-
placement was reported as the output. Fig. 7(d) shows the shear
debonding failure patterns of HPFRC-NC using mechanical (i.e.,
case 1) and mechanical/chemical (i.e., case 2) bonding techniques.
Because of the butterfly-shaped design, it can be seen that the
debonding failure propagated along the bonding interface in both
the cases and to the NC in case 2. In particular, debonding failure
in case 1 occurred on the interface. On the contrary, case 2 debond-
ing was relatively more ‘‘in” NC because the chemical agent
improved the bonding behavior.

Fig. 8 presents the debonding behaviors of HPFRC-NC under
direct shear force using the interface bonding techniques case 1



Fig. 6. (a) Manufacturing process of HPFRC-NC and (b) HPFRC-NC specimens with butterfly-shaped configuration for the direct shear test [37,38].

Fig. 7. (a) Fixture for the butterfly-shaped HPFRC-NC in the debonding test. (b) HPFRC-NC sample placed in the testing device. (c) Debonding test subjected to shear loading.
(d) Shear debonding failure patterns of HPFRC-NC using case 1: mechanical and case 2: mechanical/chemical bonding techniques [37].
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(i.e., mechanical preparation) and case 2 (i.e., mechanical/chemical
preparation). The debonding response was critically ‘‘delayed” by
applying the chemical bonding agent between HPFRC and NC,
because the bonding interface was strengthened due to the
mechanical/chemical preparation. The debonding failure went into
NC (Fig. 7(d)) and thus, the peak debonding force was reduced.

3. Numerical simulations of HPFRC-NC debonding behavior

3.1. FE modeling of HPFRC-NC

Numerical simulations were conducted in Abaqus to predict the
debonding behavior of HPFRC-NC. The FE model was built in the
butterfly configuration (Fig. 6(b)) with the partitioned bonding
area in the middle of the interface. Following the experimental
setup in Section 2, clamped boundary conditions were applied to
the top and bottom surfaces of NC, while HPFRC was allowed to
slide in the loading direction (i.e., z-direction). In the FE model,
we assumed HPFRC to be homogeneous and the improved
mechanical characteristics were determined using the experimen-
tal calibration. This is because HPFRC was completely mixed (Fig. 1
(b)) to ensure the steel fibers were uniformly distributed. The
geometries of the FE model were modeled the same as presented
in Fig. 5(b). The element and loading conditions, and numerical
solving algorithm are presented in Table 3.

HPFRC and NC were defined as plastic materials in this study,
and the concrete damage plasticity (CDP) theory was particularly
used to define the concrete specimens. This surface-based cohesive



Fig. 8. Debonding response of HPFRC-NC using the bonding techniques case 1
(mechanical interface preparation) and case 2 (mechanical/chemical interface
preparation).

Fig. 9. Experimentally calibrated compressive (in orange) and tensile (in light blue)
stress–strain data and fitting curves for HPFRC. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
article.)

1172 P. Jiao et al. / Construction and Building Materials 223 (2019) 1167–1181
behavior provided a simplified way to model cohesive connections
using the traction-separation constitutive model. The cohesive sur-
face behavior was defined for general contact, and the stress–strain
data used in the CDP model are detailed in Appendix B. In addition,
a pure master–slave formulation is enforced for surfaces with
cohesive behavior to prevent over constraints. Due to the plastic
deformations of the steel fibers, we defined the uniaxial response
of HPFRC using the true stress–strain relationship, rather than
the nominal stress–strain curve. Note that four parameters were
used to describe the flow rule and yield surface in the bonding
stress, including the dilation angle /, plastic flow potential eccen-

tricity e, biaxial strength-to-uniaxial strength ratio f b
f c
, and shape

factor K. According to the calibrated results in the experiments,
the fitted compressive and tensile stiffness-strain curves of HPFRC
are indicated in Fig. 9. The material properties of HPFRC and NC
used in the FE model are summarized in Table 4 [38,31].

Debonding behavior of HPFRC-NC was modeled using the
surface-to-surface cohesive behavior with small sliding in general
contact. This technique allows two bonded surfaces to deform
together when the plastic displacement is within the limit state
(i.e., damage evolution softening curve shown in Fig. 10). When
the displacement goes beyond the limit state, the bonded surfaces
start separating and thus, debonding happens to the defined sur-
faces. The dynamic explicit solving algorithm was applied due to
the considerations of accuracy and computational cost. In particu-
lar, we obtained the same debonding results using the static,
dynamic implicit and dynamic explicit solvers; however, the com-
putational cost was significantly reduced using the dynamic expli-
cit solving algorithm. To prevent over-constraints between the
interaction of HPFRC-NC contact interface, a pure master–slave for-
mulation was enforced for surfaces with cohesive behavior. The
crack propagation of HPFRC-NC bonding interface was performed
using contour integrals. The bonding surfaces before the damage
evolution was defined by cohesive behavior property options,
and the after evolution was defined as the damage contact. Bilinear
elastic traction-separation law was used in the cohesive behavior.
To ensure the mode-II shear debonding mainly occurs in the crack
Table 3
Element and loading conditions, and numerical solving algorithm in the FE model.

Element and loading

Element size of concretes (mm) Element size of bonding area (mm) Element type

2 1 3D solid elem
(C3D8R)
direction after damage evolution, the stiffness property in the main
crack direction Ktt is defined larger than that in other directions
(i.e., Knn and Kss) (see Appendix C). In addition, the maximum
nominal stress criterion was applied to damage initiation.

Fig. 10 shows the hardening and softening regions in the
displacement-based damage evolution softening curves of normal-
ized shear stress vs. normalized displacement for case 1 (i.e.,
mechanical) and case 2 (i.e., mechanical/chemical) bonding tech-
niques. Fig. 11(a) demonstrates the debonding failure of HPFRC-
NC obtained using the FE model. The entire debonding process
started from the initial status, partial debonding to complete
debonding, and Fig. 11(b) displays the mesh of HPFRC-NC.

3.2. Validation of the FE model

In this section, the reported FE model is validated with the
experimental results of HPFRC (presented in Fig. 4) and HPFRC-
NC (presented in Fig. 8).

3.2.1. Validation of the FE model for HPFRC
The FE model of HPFRC is validated with the compressive and

bending stiffnesses in the experiments. Fig. 12 indicates the com-
parisons of force–displacement curves between the experimental
and numerical results. It can be seen that the reported numerical
model accurately captures the linear increasing, dropping and lin-
ear decreasing characteristics of the compressive stiffness. The bi-
linear increasing and linear decreasing response of the bending
stiffness is satisfactorily captured by the FE model. The satisfactory
agreements between the experimental and numerical results
demonstrate that the approaches used in the numerical model
(e.g., dynamic explicit solver, mesh, element type, etc.) are suffi-
cient in predicting the mechanical performance of HPFRC.

3.2.2. Validation of the debonding behavior of HPFRC-NC
This part validates the FE model of HPFRC-NC by the experi-

mental debonding response presented in Fig. 8. Fig. 13 shows the
comparisons between the numerical simulations and experimental
observations. The initial stiffness Ktt that dominates the mode-II
Numerical solver

Loading rate (mm/s) Algorithm Nlgeom

ent 0.05 in compression0.015 in
bending

Dynamic
Explicit

On



Table 4
Elastic and plastic material properties in the CDP material models for HPFRC and NC.

Elasticity Plasticity

Density (kg/m3) Young’s modulus (MPa) Poisson’s ratio Dilation angle / (�) Eccentricitye f b
f c

K

HPFRC 2450 49,467 0.2 20 0.1 1.16 0.6667
NC 2400 26,480 0.167 15 0.1 1.16 0.6667

Fig. 10. Hardening and softening regions in the damage evolution softening curves
for case 1 (i.e., mechanical) and case 2 (i.e., mechanical/chemical) bonding
techniques.
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debonding is varied, and the other two stiffnesses are maintained
relatively small. Particularly, the specify stiffness coefficients for
the cohesive behavior under direct shear debonding are:
Ktt ¼ 117:46 and Knn ¼ Kss ¼ 1 (see Appendix C). Good agreements
are obtained from the comparisons of debonding behaviors for the
bonding techniques of case 1: mechanical and case 2:
mechanical/chemical.
3.3. Parametric studies on HPFRC-NC

The main goal of this study is to investigate HPFRC as a repair-
ing material to NC. According to the numerical modelling tech-
nique used in this study (i.e., CDP material model for concrete),
the dilation angle / among the four plasticity parameters in the
CDP material model (as summarized in Table 4) is particularly
Fig. 11. (a) Debonding process of HPFRC-NC under direct s
studied. Therefore, the presented numerical model is used to inves-
tigate the mechanical response of HPFRC with /.

Fig. 14(a) indicates the influence of the plasticity property on
the compressive stiffness and Fig. 14(b) shows the effect on the
bending stiffness. It can be seen that the maximum compressive
and bending forces are reduced when the dilation angle is
increased. However, the dilation angle tends not to affect the
mechanical performance of HPFRC significantly. Fig. 15 investi-
gates the influence of the effective bonding area Abond on the
debonding behavior of HPFRC-NC. To numerically reveal the influ-
ence of Abond on the debonding response, the bonding area ratio RA

is defined as

RA ¼ Abond

Acont
ð1Þ

where Acont denote the contact area of the surfaces between HPFRC
and NC.

Fig. 15(a) displays the effect of RA on the direct shear debonding
of HPFRC-NC using the mechanical interfacial preparation method
(case 1), and Fig. 15(b) shows the effect of RA on that using the
mechanical/chemical method (case 2). The bonding area ratio crit-
ically impacts the maximum debonding force for both of the bond-
ing techniques, which demonstrates the significance of the
bonding area Abond on the debonding behavior of HPFRC-NC.
Reducing the bonding area Abond, however, the overall debonding
pattern (i.e., force–displacement relationship) is maintained the
same for the bonding case 1 and case 2.

Fig. 16 presents the maximum debonding force Fmax of HPFRC-
NC with respect to the bonding area ratio RA and initial stiffness
Ktt that dominates the mode-II debonding. Fig. 16(a) shows the
discretized numerical results of Fmax, which indicates that the
debonding force is severely reduced by the decreasing of RA.
The initial stiffness Ktt, on the other hand, is less significant to
the debonding behavior of HPFRC-NC. Fig. 16(b) displays a den-
sity plot of the maximum debonding force by nonlinearly fitting
hear loading in the FE model. (b) Mesh of HPFRC-NC.



Fig. 12. Comparisons of the axial force-displacement responses of HPFRC in the
compression (in black) and 3-point bonding (in red) experiments. (For interpreta-
tion of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

Fig. 13. Comparison of the debonding behaviors of HPFRC-NC using the bonding
strategies of case 1: mechanical (in green) and case 2: mechanical/chemical (in
blue). (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

Fig. 14. Influences of dilation angle / on (a) compressive stiffness and (b) bending
stiffness of HPFRC.
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the FE data in Fig. 16(a). It can be seen that the debonding behav-
ior of HPFRC-

NC is significantly influenced by the effective bonding area Abond

in the contact interface between the concrete components.
4. Machine Learning-Based HPFRC-NC debonding prediction
model

In this section, we study the mechanical response of HPFRC-NC
using artificial intelligence-based approaches. The goal is to obtain
an empirical model to predict the debonding behavior between the
concrete components, and particularly to formulate the shear
debonding strength. Given that HPFRC has been extensively
applied as a repair material to existing concrete structures, it is
of desire to achieve an accurate prediction model to optimize the
bonding performance and enhance the critical debonding strength.
One of the most severe issues of predicting the HPFRC-NC debond-
ing behavior is how to characterize the dependent parameters
using the most suitable simulation techniques. In this study, a
robust ML algorithm called gene expression programming (GEP)
is developed to derive a highly nonlinear prediction model for
the shear debonding of HPFRC-NC.
4.1. Gene expression programming method

As a subdivision of artificial intelligence (AI) inspired by biolog-
ical learning processes, the ML techniques are considered as pow-
erful, modern alternative to traditional analysis methods to predict
the behavior of real-world systems. They automatically learn from
experience and extract various discriminators in the process [25].
ML has a range of well-known branches, such as the artificial neu-
ral network (ANN), fuzzy inference system (FIS), adaptive neuro-
fuzzy system (ANFIS), and support vector machines (SVM). These
techniques have been successfully deployed to solve problems in
the engineering field (e.g., [32,53]). Among different ML tech-
niques, ANNs are arguably the most widely used methods. Despite
their good performance, ANNs are considered as black-box models.
That is, they are not capable of generating practical prediction
equations. Another limitation of ANNs is that their structure needs
to be defined in advance as done for traditional regression [2].

Inspired by the natural evolution and the Darwinian concept of
‘‘Survival of the Fittest”, evolutionary computational (EC) methods
are well-known branches of soft computing. Some of the subsets of
EC are evolutionary strategies (ESs) [41] and evolutionary pro-
gramming (EP) [15]. These techniques are collectively known as
evolutionary algorithms (EAs). In general, an EA consists of an ini-
tial population of random individuals improved by a set of genetic
operators (e.g., reproduction, mutation and recombination). The
individuals are encoded solutions in form of binary strings of num-
bers evaluated by some fitness functions [11]. Improvement of the
population is a process to reach the fittest solution with the max-
imum convergence. Typically, in an EA, a population of individual
is randomly created and then the members are ranked according
to a fitness function. The members with the highest fitness ranking
are given a higher chance to become parents for the next



Fig. 15. (a) Variations of the maximum debonding force Fmaxwith respect to the
bonding area ratio RA and initial debonding stiffness Ktt. (b) Nonlinearly fitted
density plot of Fmax with RA and Ktt.

Fig. 16. A comparative illustration of encoded solutions by GA and GP.

Fig. 17. Predictor variables used in the GEP model to predict the sd of HPFRC-NC.

P. Jiao et al. / Construction and Building Materials 223 (2019) 1167–1181 1175
generation (offspring). The approach used to generate offspring
from the parents is referred to as the reproduction heuristic. Then
selected members are randomly transformed into new members
via mutation, recombination or crossover. These steps are repeated
until the convergence conditions are satisfied and the fittest mem-
ber is selected [21,11]. The differences between EAs are in the way
that they represent the individual structures, types of selection
mechanism, forms of genetic operators, and measures of perfor-
mance [4].

The genetic algorithm (GA) technique is considered as a robust
EA for dealing with a wide variety of complex civil engineering
problems [47,26]. Note that genetic programming (GP) is a special-
ization of GA where the encoded solutions (individuals) are com-
puter programs rather than binary strings [21,8]. Fig. 17
illustrates a comparison of the encoded solutions (individuals) by
GA and GP [4]. In GP, inputs and corresponding output data sam-
ples are known and the main goal is to generate predictive models
relating them [48]. GP has advantages over the other ML tech-
niques such as ANNs. A notable feature of GP and its variants is that
they can produce highly nonlinear prediction equations without a
need to pre-define the form of the existing relationship [2]. How-
ever, the application of GP and its variants to infrastructure condi-
tion assessment has yet to be fully exploited. The traditional tree-
based GP is the mostly widely-used representation of GP [48]. The
solutions evolved by the traditional GP algorithm are computer
programs represented as tree-shaped structures and expressed in
a functional programming language (such as LISP). Since comput-
ers do not naturally run tree-shaped programs, slow interpreters
are used as a part of the traditional GP. As a result, the simulation
process using such functional programming language is slow. In
addition to the traditional tree-based GP, there are other types of
GP approaches, i.e., linear and graph-based [8]. The emphasis of
the present study was placed on linear-based GP techniques. The
programs evolved by linear variants of GP are represented as linear
strings that are decoded and expressed as nonlinear entities [30]. A
linear GP system can run several orders of magnitude faster than
comparable tree-based interpreting systems. The enhanced speed
of the linear variants of GP permits conducting many runs in real-
istic timeframes. This leads to deriving consistent and high-
precision models with little customization.

GEP is one of the robust linear-GP techniques proposed by Fer-
reira [14]. While the traditional GP representation is based on the
evaluation of a single tree (model) expression, GEP evolves com-
puter programs of different sizes and shapes encoded in linear
chromosomes of fixed length. The evolved programs are then
expressed as parse trees of different sizes and shapes. These trees
are called GEP expression trees (ETs) [2,4]. The nature of GEP
allows the evolution of more complex programs composed of sev-
eral subprograms. Function set, terminal set, fitness function, con-
trol parameters, and termination condition are the main
components of GEP. Each GEP gene contains a list of symbols with
a fixed length that can be any element from a function and termi-
nal set. Comprehensive descriptions of the GEP algorithm can be
found in [2,4]. Fig. 17 presents a comparative illustration of
encoded solutions by the GA and GP algorithms.



Fig. 18. Expression trees of the best GEP prediction model on sd (ET =
P

Sub-ETi) for
(a) ET1, (b) ET2, (c) ET3, (d) ET4, and (e) ET5 .
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4.2. GEP-Based prediction model for shear debonding of HPFRC-NC

In this study, a GEP prediction model is developed for the shear
debonding strength (sd) of HPFRC-NC using the numerical results
obtained from the FE model. Following the existing studies in the
literature, the variables affecting sdare categorized into three
groups, including the geometry, material and bonding variables
[17,18,24,50,55]. In particular, the geometry variables include con-
tact interface width W , height H, bonding area width w and height
h (which are investigated in terms of the bonding area ratio RA in
Section 3.3). The compressive and tensile strengths of HPFRC and

NC, f
0
c;HPFRC , f

0
t;HPFRC ,f

0
c;NC and f

0
t;NC , respectively, are used as the mate-

rial factors, and the interface bonding technique SurfT (i.e., case 1:
mechanical vs. case 2: mechanical/chemical) is also taken into
account. Consequently, the GEP model that predicts sdcan be for-
mulated as:

sd ¼ f W;H;w;h|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Geometry

; f 0c;HPFRC ; f
0
t;HPFRC ; f

0
c;NC ; f

0
t;NC ;|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Material

SurfT|fflffl{zfflffl}
Bonding

0
B@

1
CA ð2Þ

Fig. 18 presents the variables used in the sd prediction model.
An alternative approach is proposed for the calibration of the

GEP model. Several configurations of W;H;w;h; f
0
c;HPFRC ; f

0
t;HPFRC ;

f
0
c;NC ; f

0
t;NC ; and SurfT are introduced into the FE model, and the cor-

responding shear strength values are obtained. Subsequently, the
developed database of 63 samples is used to train the GEP algo-
rithm. The proposed strategy is particularly important because
performing laboratory testing to determine the shear strength of
HPFRC-NC is costly and time-consuming. In addition, the numeri-
cal approach readily provides the opportunity to investigate the
effect of various scenarios affecting the shear strength. The data-
base of the maximum shear debonding stress and ranges of the
variables used to develop the GEP model are summarized in
Appendix D.

In the analysis, SurfT type is represented by 1 for mechanical
bonding surface treatment without chemical agent and 2 for
mechanical bonding surface treatment with chemical agent. For
the GEP analysis, three random divisions were considered for the
data: learning (�65%), validation (�10%), and testing (�25%)
[8,12,29,7]. The learning and validation subsets were used to cali-
brate and evaluate the models, respectively. Since they were both
involved in selecting the final models, they were labeled as training
data in the subsequent analyses. After a series of preliminary runs
and observing the GEP algorithm performance, it is found that all of

the considered variables (i.e.W;H;w;h; f
0
c;HPFRC ; f

0
t;HPFRC ; f

0
c;NC ; f

0
t;NC ;

and SurfT) improve the prediction performance. Then, the GEP
method is used to explore the best mathematical models.

Table 5 shows a set of parameters used in the GEP simulations.
The values considered for these parameters were based on both
some previously suggested values [2,1] and after making several
preliminary runs and observing the performance behavior. There
are five main parts for setting GEP parameters including: general
setting, complexity increase, genetic operators, numerical con-
stant, and fitness function. Several runs were conducted to come
up with a parameterization of GEP that provided enough robust-
ness and generalization to solve the problem. Three levels were
set for the population size (number of chromosomes) (20, 40,
80). The chromosome architectures of the models evolved by GEP
include head size and number of genes. The success of the GEP
algorithm usually increases with increasing the initial and maxi-
mum program size parameters. In this case, the complexity of
the evolved functions increases. Three optimal levels were consid-
ered for the head size (2, 4, 6) and three levels were set for the
number of genes (6, 8, 10). For the number of genes greater than
one, the addition linking function was used to link the mathemat-
ical terms encoded in each gene. There were 3 � 3 � 3 = 27 differ-
ent combinations of the parameters. All of these parameter
combinations were tested, and 3 replications are carried out for
each of them. Therefore, the overall number of optimal individual
runs was equal to 27 � 3 = 81. The period of time acceptable for
evolution to occur without improvement in best fitness is set via
the generations without change parameter. After 2000 generations,
a mass extinction or a neutral gene was automatically added to the
model. The program was run until no longer significant improve-



Table 5
Parameter settings for the GEP algorithm.

Category Parameter Settings

General Chromosomes 20, 40, 80
Genes 2, 4, 6
Head Size 6, 8, 10
Linking Function Addition
Function set +, -, �, /, ffip ,

ffiffiffiffi
3

p
, log, power,

exp
Complexity

Increase
Generations without
Change

2000

Number of Tries 3
Max. Complexity 5

Genetic
Operators

Mutation Rate 0.00138
Inversion Rate 0.00546

Fig. 19. Measured against predicted sdusing the GEP model: (a) training data, (b)
testing data.

Fig. 20. Sensitivity analysis of the final predictor variables in the GEP analysis.
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ment is obtained from the model. The GEP algorithm was imple-
mented using GeneXproTools.

The optimal GEP-based prediction model for the sd of HPFRC-
NC is:

sd MPað Þ ¼ �SurfT �
ffiffiffiffiffiffiffiffiffiffiffiffi
SurfT

p
þ

ffiffiffi
h3

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e
wþf

0
c;NC

�f
0
t;HPFRC

27:924 � SurfT
3

r

þ f
0
t;HPFRC �W

f
0
c;HPFRC � ðf 0

t;HPFRC � SurfTÞ

� Logðf 0
t;NC þ HÞ

f
0
t;HPFRC � Logð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f
0
t;HPFRC þ f

0
c;NC

3
q

Þ
ð3Þ

where, W;H;w;h; f
0
c;HPFRC ; f

0
t;HPFRC ; f

0
c;NC ; f

0
t;NC ; and SurfT denote the

contact interface width, contact interface height, bonding area
width, bonding area height, compressive strengths of HPFRC, tensile
strengths of HPFRC, compressive strengths of NC, tensile strengths
of NC, and interface bonding strategy, respectively. In Eq. (3),
SurfT is varied between 1 and 2, where 1 denotes mechanical sur-
face treatment and 2 represents mechanical/chemical surface treat-
ment. As seen, the model is a complicated combination of
parameters and operators to predict sd. It is generated by the GEP
algorithm after controlling millions of linear and nonlinear models.
Thus, it can efficiently consider the interactions between the predic-
tor variables and sd.

The expression trees (ETs) of the obtained model is given in

Fig. 19. In this figure, d0, . . ., d8 represent W;H;w; h; f
0
c;HPFRC ;

f
0
t;HPFRC ; f

0
c;NC ; f

0
t;NC ; and SurfT , respectively, and parameter c0 is a

numerical constant. This model is comprised of five individual
sub-models connected using addition operation. Each of these
sub-models includes a part of the information provided by the final
model [14]. Fig. 20 presents the predictions provided by this
model. The high density of the points around the ideal 45-degree
angle line clearly indicates the good performance of the model.
Determination coefficient (R2), root mean squared error (RMSE)
and mean absolute error (MAE) are used as the performance
measures.

One of the advantages of GEP for predicting sd is that it directly
learns from raw experimental data presented to it. This method
extracts the subtle functional relationships among the data, even
if the underlying relationships are unknown or the physical mean-
ing is difficult to be explained. Contrary to GEP and other GP
branches, most conventional methods (like regression and finite
element method) need prior knowledge about the nature of the
relationships among the data. Classical constitutive models rely
on assuming the structure of the model in advance, which may
be suboptimal. On the other hand, the best solutions generated
by GEP are determined after controlling numerous preliminary
models, even millions of linear and nonlinear models. Therefore,
the beauty of the derived model is that it can efficiently consider
the interactions between the dependent and independent
variables.
4.3. Design example

The proposed GEP model is used to predict the experimental sd
of two HPFRC-NC samples reported by Manish et al. (2014).
Sample 1

W = 75 mm, H = 102 mm, w = 50 mm, h = 50 mm, f
0
c;HPFRC =

108.6 MPa, f
0
t;HPFRC = 40 MPa, f

0
c;NC = 13.5 MPa, f

0
t;NC= 5 MPa, and

SurfT = 1 (i.e., mechanical bonding treatment).



Table 6
Performance measures for further validation of the GEP model.

Item Formula Condition GEP

1
R =

ð
Pn

i¼1
ðOi�OiÞðti�tiÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

1¼1
ðOi�OiÞ

2Pn

i¼1
ðti�ti Þ

2
q 0:8 < R 0.985

2
k ¼

Pn

i¼1
hi�tið Þ

hi
2

0:85 < k < 1:15 1.014

3
k

0 ¼
Pn

i¼1
hi�tið Þ

ti2
0:85 < k

0
< 1:15 0.981

4 m ¼ R2�Ro
2

R2
mj j < 0:1 �0.030

5 n ¼ R2�R
o0

2

R2
nj j < 0:1 �0.030

6
Rm ¼ R2 � 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � Ro

2
��� ���

r� �
0:5 < Rm 0.804

7
Ro

2 ¼ 1�
Pn

i¼1
ti�hi

oð Þ2Pn

i¼1
ti�tið Þ2 ; hi

o = k�ti
Should be close to 1 0.999

8
Ro0

2 ¼ 1�
Pn

i¼1
hi�ti oð Þ2Pn

i¼1
hi�hið Þ2 ; ti

o=k
0 � hi

Should be close to 1 0.997
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Sample 2

W = 75 mm, H = 102 mm, w = 50 mm, h = 50 mm, f
0
c;HPFRC =

90 MPa, f
0
t;HPFRC = 30 MPa, f

0
c;NC = 11 MPa, f

0
t;NC= 4 MPa, and SurfT = 2

(i.e., mechanical/chemical bonding treatment).
Substituting these numbers into Eq. (3), the predicted sdvalues

for Sample 1 and Sample 2 are 3.28 and 1.89 MPa, respectively. The
measured sdvalues for Sample 1 and Sample 2 are 3.2 and 2.1 MPa,
which are 2% lower and 10% higher than the predicted sd,
respectively.

4.4. Performance evaluation

On the basis of a rational hypothesis, Smith [42] argues that for
the correlation coefficient (|R|) higher than 0.8, a strong correlation
exists between the predicted and measured values. In all condi-
tions, the error values (e.g. RMSE or MAE) should be maintained
as the minimum [1]. Based on the results shown in Fig. 20, the pro-
posed GEP model has a satisfactory performance on the training
and testing data sets. As observed from Table 6, the developed
model satisfies all of the requisite conditions, and the validation
phase ensures that the proposed models are strongly suitable
and applicable.

4.5. Sensitivity analysis

As discusses in Section 4.2, an extensive simulation study is car-
ried out to find the most relevant parameters such that to develop
the most effective prediction model. The optimal models are built

using 9 input parameters (W;H;w; h; f
0
c;HPFRC ; f

0
t;HPFRC ; f

0
c;NC ; f

0
t;NC ; and

SurfT). However, a second phase of sensitivity analysis is further
performed to distinguish the parameters with higher contributions
in the final models. To this aim, the frequency values of the input
parameters are obtained for the GEP models. In case a design vari-
able has appeared in 100% of the best thirty GEP programs, its fre-
quency value will be equal to 100 [16]. Fig. 21 shows the GEP
sensitivity analysis results. As seen, sdis more sensitive to h,

f
0
c;NC ; f

0
t;NC ; and SurfT compared to the other variables.
5. Conclusions

This paper reported HPFRC as a repairing material for NC and
particularly investigated the debonding behavior between HPFRC
and NC under direct shear loading. The HPFRC specimens were first
fabricated and calibrated to obtain the compressive and bending
(i.e., flexural) strengths. The HPFRC-NC samples were then experi-
mentally made using the bonding techniques of the mechanical
surface treatments with and without chemical agent. A FE model
was developed to characterize the debonding behavior of HPFRC-
NC with different geometric and material parameters and the
bonding interface treatments. A powerful ML method called GEP
was then deployed to develop a prediction model for the shear
strength of HPFRC-NC. An alternative approach was proposed for
the calibration of the GEP model. The obtained numerical results
were used to train the GEP algorithm. Design examples were pre-
sented to illustrate the efficiency of the developed GEP model in
characterizing the mechanical response of the HPFRC-NC samples.
One of the distinctive features of GEP-based model is that it is
established upon the experimental data rather than on the
assumptions made in developing the conventional models. The
predictive capabilities of the derived model is within the range of
the data used for its calibration. However, the model can easily
be retrained and improved to make more accurate predictions for
a wider range by including the data for other material types and
testing conditions. However, the GEP algorithm is parameter sensi-
tive. The GEP simulation process can be accelerated via using any
form of optimally controlling the parameters of the run. In this
context, further research can focus on hybridizing GEP with opti-
mization algorithms such as GAs, Simulated Annealing, Ant Colony,
or Tabu Search. Future research can also focus on studying the
debonding behavior of other types of high-performance concretes
as repairing materials to NC structures.
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Appendix

A. Component material properties of HPFRC

Table A1 displays the compound compositions of the Portland
cement. Table A2 presents the sieve analysis data of the sands.
Table A3 summarizes the geometric and material properties of
the steel fibers. Table A4 shows the analysis data for ultrafine
quartz powder. Table A5 exhibits the basic properties and major
chemical compositions of silica fume (SF).

B. Detailed information in the FE model

Table B1 presents the compressive and tensile stress–strain
data used to characterize the mechanical properties of HPFRC in



Table A1
Compound compositions of Portland cement [37].

Compounds SiO2 CaO Al2O3 Fe2O3 MgO SO3 LOI Na2O + 0.658K2O C3A C3S Insoluble residue

% by mass 20.2 63.6 5.4 4.3 0.94 3.0 1.35 0.56 7.2 54.0 0.3

Table A2
Sieve analysis data for fine natural sands [37].

Sieve size (mm) 0.85 0.6 0.42 0.3 0.25 0.21 0.15

% passing (by wt.) Sand OO 100 95 40 5 2 1 –
Sand OOO 100 100 95 75 45 30 5

Table A3
Geometric and material properties of steel fibers [37].

Properties Length (mm) Diameter (mm) Aspect ratio Tensile strength (GPa) Young’s modulus (GPa) Specific gravity

Values 13 0.2 65 2.16 210 7.85

Table A4
Sieve analysis data for ultrafine quartz powder [37].

Sieve size (mm) 0.15 0.106 0.075 0.053 0.045

% passing (by wt.) 100.0 99.8 97.3 88.8 82.3

Table A5
Basic properties and major chemical compositions of silica fume (SF) [37].

Properties Specific gravity SiO2 (%) Crystalline SiO2 (%)

Values 2.2 60–100 0.5–1.5
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the CDP model. Table B2 presents the compressive and tensile
stress–strain data used in the CDP model for NC.
C. Definition of the initial stiffness K

The coefficients in the initial stiffnesses Knn, Kss and Ktt are
defined as
Table B1
Compressive and tensile stress–strain data in the CDP model for HPFRC.

Comp. Stress 110.2 117.2 124.3 131.4 138.0 147.9 154.9 163.9 169.2 175.7 156.0 124.5 119.2
Strain 0 9E-6 3.5E-5 5.8E-5 9.3E-5 1.6E-4 2.3E-4 3.3E-4 4.4E-4 5.7E-4 1.1E-3 2.9E-3 3.3E-9

Tensile Stress 7.42 9.12 11.24 11.33 12.14 12.22 12.65 12.6 12.78 13.11 13.05 13.7 –
Strain 0 1.2E-4 3.2E-4 5.7E-4 8E-4 1.1E-3 1.3E-3 1.5E-3 1.7E-3 2E-3 2.2E-3 2.5E-3 –
Table B2
Compressive and tensile stress–strain data in the CDP model for NC.

Comp. Stress 24.02 29.21 31.71 32.36
Strain 0 4E-4 8E-4 1.2E-3

Tensile Stress 1.78 1.46 1.11 0.96
Strain 0 1E-4 3E-4 4E-4
t ¼
tn
ts
tt

2
64

3
75 ¼

Knn Kns Knt

Kns Kss Kst

Knt Kst Ktt

2
64

3
75

dn
ds
dt

2
64

3
75 ¼ Kd ðC1Þ

where Kns ¼ Ksn ¼ Knt ¼ Ktn ¼ Kst ¼ K ts ¼ 0. Due to the mode-II
debonding of HPFRC-NC under direct shear loading, K tt is dominant
in the stiffness matrix. Therefore, the debonding behavior between
HPFRC and NC is investigated in terms of Ktt.
D. FE data of the maximum shear debonding stress

Table D1 summarizes the database used in the machine learn-
ing model with respect to predictor variables. Table D2 details
the ranges of the variables.
31.77 30.38 28.51 21.91 14.9 2.95
1.6E-3 2E-3 2.4E-3 3.6E-3 5E-3 1E-2
0.8 0.54 0.36 0.16 0.07 0.04
5E-4 8E-4 1E-3 2E-3 3E-3 5E-3



Table D1
Database of the sd of HPFRC-NC and associated predictor variables.

Trail No. Geometry Variables (mm) Material Variables (MPa) Bonding variable Debonding behavior (MPa)

W H w h f
0
c;HPFRC f

0
c;NC f

0
t;HPFRC f

0
t;NC

SurfT sd

1 50 70 40 40 50 16 5 1.5 Mech.* 1.412
2 55 80 50 50 50 16 5 1.5 Mech. 1.954
3 60 90 64 64 50 16 5 1.5 Mech. 2.548
4 70 95 70 80 50 16 5 1.5 Mech. 2.968
5 75 102 75 102 50 16 5 1.5 Mech. 3.459
6 50 70 40 40 65 20 7.3 2.1 Mech. 1.772
7 55 80 50 50 65 20 7.3 2.1 Mech. 2.457
8 60 90 64 64 65 20 7.3 2.1 Mech. 3.134
9 70 95 70 80 65 20 7.3 2.1 Mech. 3.212
10 75 102 75 102 65 20 7.3 2.1 Mech. 3.681
11 50 70 40 40 80 25 9.5 3 Mech. 1.909
12 55 80 50 50 80 25 9.5 3 Mech. 2.883
13 60 90 64 64 80 25 9.5 3 Mech. 3.877
14 70 95 70 80 80 25 9.5 3 Mech. 4.115
15 75 102 75 102 80 25 9.5 3 Mech. 4.731
16 50 70 40 40 90 30 11 4 Mech. 2.161
17 55 80 50 50 90 30 11 4 Mech. 3.217
18 60 90 64 64 90 30 11 4 Mech. 4.028
19 70 95 70 80 90 30 11 4 Mech. 4.567
20 75 102 75 102 90 30 11 4 Mech. 5.059
21 50 70 40 40 108.6 40 13.5 5 Mech. 2.338
22 55 80 50 50 108.6 40 13.5 5 Mech. 3.493
23 70 95 70 80 108.6 40 13.5 5 Mech. 4.818
24 75 102 75 102 108.6 40 13.5 5 Mech. 5.327
25 50 70 40 40 130 50 15 5.5 Mech. 2.612
26 55 80 50 50 130 50 15 5.5 Mech. 3.997
27 60 90 64 64 130 50 15 5.5 Mech. 5.134
28 70 95 70 80 130 50 15 5.5 Mech. 5.436
29 75 102 75 102 130 50 15 5.5 Mech. 5.892
30 50 70 40 40 140 55 15 5.5 Mech. 2.884
31 55 80 50 50 140 55 15 5.5 Mech. 4.287
32 60 90 64 64 140 55 15 5.5 Mech. 5.447
33 70 95 70 80 140 55 15 5.5 Mech. 5.935
34 75 102 75 102 140 55 15 5.5 Mech. 6.286
35 50 70 40 40 50 16 5 1.5 Mech. + Chem.** 0.977
36 55 80 50 50 50 16 5 1.5 Mech. + Chem. 1.132
37 60 90 64 64 50 16 5 1.5 Mech. + Chem. 1.624
38 70 95 70 80 50 16 5 1.5 Mech. + Chem. 2.064
39 75 102 75 102 50 16 5 1.5 Mech. + Chem. 2.558
40 50 70 40 40 65 20 7.3 2.1 Mech. + Chem. 1.126
41 55 80 50 50 65 20 7.3 2.1 Mech. + Chem. 1.457
42 60 90 64 64 65 20 7.3 2.1 Mech. + Chem. 2.031
43 70 95 70 80 65 20 7.3 2.1 Mech. + Chem. 2.342
44 75 102 75 102 65 20 7.3 2.1 Mech. + Chem. 2.719
45 50 70 40 40 80 25 9.5 3 Mech. + Chem. 1.587
46 55 80 50 50 80 25 9.5 3 Mech. + Chem. 1.871
47 60 90 64 64 80 25 9.5 3 Mech. + Chem. 2.217
48 70 95 70 80 80 25 9.5 3 Mech. + Chem. 3.464
49 75 102 75 102 80 25 9.5 3 Mech. + Chem. 3.932
50 50 70 40 40 90 30 11 4 Mech. + Chem. 1.954
51 55 80 50 50 90 30 11 4 Mech. + Chem. 2.315
52 60 90 64 64 90 30 11 4 Mech. + Chem. 2.889
53 70 95 70 80 90 30 11 4 Mech. + Chem. 3.358
54 75 102 75 102 90 30 11 4 Mech. + Chem. 3.963
55 50 70 40 40 108.6 40 13.5 5 Mech. + Chem. 2.001
56 55 80 50 50 108.6 40 13.5 5 Mech. + Chem. 2.748
57 70 95 70 80 108.6 40 13.5 5 Mech. + Chem. 3.908
58 75 102 75 102 108.6 40 13.5 5 Mech. + Chem. 4.351
59 50 70 40 40 130 50 15 5.5 Mech. + Chem. 3.055
60 55 80 50 50 130 50 15 5.5 Mech. + Chem. 3.271
61 60 90 64 64 130 50 15 5.5 Mech. + Chem. 4.095
62 70 95 70 80 130 50 15 5.5 Mech. + Chem. 4.622
63 75 102 75 102 130 50 5 5.5 Mech. + Chem. 4.989

* Mech.: Mechanical bonding surface treatment without chemical agent.
** Mech. + Chem.: Mechanical bonding surface treatment with chemical agent.
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Table D2
Ranges of the variables in the GEP prediction model.

Variable Range

Contact interface width, W (mm) 50–75
Contact interface height, H (mm) 70–102
Bonding area width, w (mm) 40–75
Bonding area height, h (mm) 40–102

Compressive strength of HPFRC, f
0
c;HPFRC (MPa) 50–140

Tensile strength of HPFRC, f
0
t;HPFRC (MPa) 5–15

Compressive strength of NC, f
0
c;NC (MPa) 16–55

Tensile strength of NC, f
0
c;NC (MPa) 1.5–5.5

Surface treatment, SurfT Mech. and Mech. + Chem.
Shear debonding strength, sd (MPa) 0.98–6.29
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