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A B S T R A C T   

Comprehending the microstructure of LC3 is of paramount importance since it governs majority properties of 
cement. Here, we investigate the spatial correlation and pore morphology of LC3, revealing microstructural 
refinement effects through deep learning and image-based characterisation. A deep learning model was devel-
oped to characterise the spatial correlation of the local features of 28-day LC3 with optimised resolution and 
physical image size, identifying a lower probability of connected pores occurring but a higher likelihood of 
connected solid particles in LC3 than in OPC. A 33% lower maximum correlation revealed by two-point corre-
lation analysis inferred that LC3 possessed a smaller RVE size and increased packing density. The pore 
morphological analysis based on BSE images indicated a higher hydration rate and pore deformation in LC3. 
These findings demonstrate the microstructural refinement mechanisms of LC3 but also lay the foundation for 
localised microstructural characterisation of cementitious materials with the potential to complement existing 
traditional analyses.   

1. Introduction 

Supplementary cementitious materials, including calcined clay (CC), 
are low-carbon solutions by substituting clinker for cement or replacing 
cement in the concrete mixture to reduce a relatively large amount of 
carbon dioxide emitted during clinker production [1–4]. Recently, a 
new type of ternary blended cement, limestone calcined clay cement 
(LC3), has been developed with a 50% clinker replacement ratio [5,6]. 
As a high-potential green solution for the cement industry, LC3 can also 
achieve better mechanical performance and superior durability 
compared with ordinary Portland cement (OPC) via microstructure 
modification [7,8]. 

LC3 is a relatively new ternary blended cement where most of the 
existing research topics are focused on their microstructure, mainly 
involving the investigation of porosity and pore size distribution [9,10]. 
Scrivener et al. reported that increasing the kaolinite content reduced 
porosity from 3 days, which indicated that the pozzolanic reaction at 
early hydration ages is the main factor contributing to the microstruc-
tural refinement of LC3 [11]. Sui et al. [12] quantitatively analysed the 
28-day localised porosity surrounding the solid phases in LC3 and found 
it was only 60% by volume compared with OPC, owing to the pozzolanic 
and synergetic reaction between CC and limestone (LS), increasing the 

formation of the AFm phases, such as hemi- and mono-carboaluminates. 
Zunino and Scrivener investigated the long-term microstructural 
development and refinement of LC3 up to 3 years hydration, reporting 
up to 50% decrease in pore size, mainly due to the formation of car-
boaluminite and strätlingite phases and the transformation of hemi- 
carboaluminites formed from the early hydration age to mono- 
carboaluminates [13]. 

However, the microstructural refinement of cementitious materials 
depends not only on porosity and pore size [14] because cement com-
posites are typically random heterogeneous materials, and pore size 
distribution does not contain any spatial information on cementitious 
materials [15,16]. Recent research on OPC composites has reported that 
the spatial correlation of pore clusters, the spatial correlation of 
microstructural features and local morphological descriptors (i.e., pore 
shape) also contribute to the refinement of the cement microstructure, 
subsequently critically affecting the mechanical and durability perfor-
mance [17]. Research has shown that cementitious composites with a 
lower correlation distance tend to have superior mechanical perfor-
mance due to a more homogenous microstructure and reduced stress 
concentration [18,19], highlighting the importance of the analysis and 
understanding of the spatial correlation of cementitious materials. 
Specifically, it has been reported that the spatial correlation of the 
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microstructure in cementitious materials can be quantitatively charac-
terised by statistical functions, which essentially capture the degree of 
spatial correlation among different locations [20], such as the two-point 
correlation function [21]. Two-point correlation is a geometric concept 
widely adopted in microstructural analysis [22], and it describes the 
influence of any given point in an image on other points with regard to 
their distance (correlation distance) [23,24]. 

The two-point correlation function alone, however, cannot suffi-
ciently and uniquely characterise the spatial correlation because it fails 
to give sufficient consideration to the influences on the spatial distri-
bution of solid phases and pore shape [15,21]. Wang et al. [25] used 
spatial distribution analysis to characterise the microstructural refine-
ment of cement composites via quantitative nanomechanical mapping 
(QNM). The microstructural densification and uniformity from incor-
porating graphene oxide in cement paste reduced the stress concentra-
tion and increased mechanical strength up to 90% [25]. In addition, the 
pore shape descriptor, solidity, illustrates the edge of cement particles 
and the hydration products on the wall of the pores, which are influ-
enced by the hydration degree and packing of cementitious materials, 
respectively [26]. An example of utilising solidity is the study by Liu 
et al., who demonstrated that solidity could illustrate the overall 
densification of the cement microstructure with hydration processing, 
indicating that microstructural refinement effects can be analysed by 
pore shape [27]. 

Understanding the microstructural refinement mechanism is one of 
the primary challenges in the analysis of cementitious materials [28]. 
Conventional statistical approaches aforementioned cannot efficiently 
identify and extract the nano-to-microscale changes in cementitious 
composites. Although LC3 is an OPC-based cement, several studies 
report that the formation of LC3′s microstructure differs from that of OPC 
[29–31], such as different types of hydration products [29] and a lower 
gel–space ratio [32]. Therefore, the detailed microstructural refinement 
mechanisms of LC3 still need to be investigated using advanced tools (e. 
g., artificial intelligence-based approach). 

Machine learning encompasses a wide array of techniques that 
exhibit diverse applications, each presenting distinct strengths and 
weaknesses. Different approaches offer unique advantages tailored to 
specific tasks. As an advanced machine learning method, deep neural 
networks (DNN) can provide the inner correlation via multiple pro-
cessing layer artificial neural networks [33,34] and distinguish the most 
significant characteristics from redundant or duplicate input data [35], 
which previously mentioned methods could not achieve. Existing 
studies have reported the feasibility and accuracy of DNNs for predicting 
microstructure-based properties, such as compressive strength [36], 
elastic modulus [37] and phase segmentation [38], demonstrating the 
ability to show the microstructural changes in cementitious materials. 
DNN is able to learn from the input data (i.e., cement microstructure 
images) and extract the most representative and unique features with 
minimal interfering factors to reveal the potential microstructural 
refinement mechanisms (i.e., spatial correlation between different 
phases) [35,39]. 

Moreover, DNN is known for its cost efficiency, as it requires low 
computational resources [40–42]. The great effectiveness of a DNN was 
exemplified in a study by Wang et al. in which the incorporation of nano 
modifications within the random heterogeneous microstructure 
revealed distinctive features that were effectively learned by DNN, 
thereby elucidating the refinement mechanisms associated with spatial 
heterogeneity in the hardened cement microstructure [43]. Therefore, 
we expected that a DNN would distinguish the most representative 
features from cement microstructure images, contributing to a deeper 
understanding of spatial correlation and revealing reliable but unan-
ticipated findings on the microstructural refinement mechanisms of LC3. 

To our knowledge, this study investigated the spatial correlation and 
pore morphology of LC3 to reveal the microstructural refinement effects, 
which have not been done previously. A deep learning approach was 
adopted to assist in understanding mechanical and durability-related 

performance. Image-based microstructural analysis and visualisation 
were used to demonstrate the modification of LC3′s microstructure by 
statistical pore diameter characterisation and morphology of the pores. 
Both BSE and micro-CT images were adopted for DNN training to find an 
optimised physical image size and resolution with the lowest compu-
tational costs. Upon conducting the DNN training, the characteristic 
features were visualised to reveal the probability of the occurrence of 
pores and solid phases. Two-point correlation function and QNM were 
then applied to further explain the influences of the spatial correlation of 
pores and solid phases between LC3 and OPC. These findings not only 
quantified the microstructural refinement of LC3 but also created a 
foundation for localised microstructural characterisation of cementi-
tious materials. Thus, our study results could promote the understanding 
of the structure–property link in LC3 with the potential to complement 
existing traditional cementitious material microstructural analyses. 

2. Materials and methods 

2.1. Materials 

The CC mainly contained muscovite, quartz, and 58% kaolinite from 
kaolin tailings in Guanxi Zhuang Autonomous Region, China. OPC that 
met the requirements of Australian Standard AS 3972 was used to pre-
pare the cement pastes in this study. The chemical composition of the CC 
and OPC is presented in Table 1. Polycarboxylic-based superplasticiser 
purchased from Sika Australia Pty Ltd was used to adjust the workability 
of the LC3 paste. 

Fig. 1 demonstrates the particle size distribution of cement, CC, and 
LS. In terms of the calcination process, an industrial rotary kiln at 800 ◦C 
was used to maintain the high activity of the CC. 

OPC and LC3 pastes were prepared to examine the microstructure, 
following the requirements of Australia Standard AS 3972 [44], and the 
mixes have been listed in Table 2. All samples were demoulded after 24 
h and immersed in saturated Ca(OH)2 solution until 28 days. The 
hardened samples were then immersed in isopropanol to arrest the hy-
dration for microstructure characterisation. 

2.2. Image acquisition and preparation 

Two different microstructure analysis techniques, metal intrusion- 
based backscattered electron (BSE) imaging and X-ray computed to-
mography (CT) technique, were applied to observe the microstructure of 
OPC and LC3 pastes at the curing age of 28 days and obtain the original 
dataset for DNN model training. 

To acquire BSE images that accurately displayed the microstructure 
of the cementitious materials, a low melting point metal intrusion 
technique, Field’s metal intrusion porosimetry (FMIP), was used. Three 
steps are essential for the FMIP technique to enable observation of the 
morphology. Cubic samples of ≈5 × 5 × 5 mm were taken from the core 
of each cement sample. Field’s metal was put into a titanium alloy 
holder to be heated and the holder’s surface temperature was main-
tained at 80 ± 5 ◦C during the experiment to ensure that the metal was 
kept in a liquid state the whole time. After putting the cement sample 
into the holder, a Shimadzu AG-X test machine was used to gradually 
pressurise to 400 MPa at a constant pressure increase of 11.2 MPa/min 
and held for another 30 min at 400 MPa to guarantee the pores of the 
cement sample had been adequately intruded. Corresponding to the 400 
MPa loading pressure, the minimum reachable pore diameter was ≈3.6 
nm following Washburn’s equation [45]. Then, the holder was cooled to 
room temperature under this pressure to ensure the Field’s metal 
became solid before removing the sample. The sample was impregnated 
with epoxy resin and polished to reduce metal extrusion during scanning 
electron microscopy (SEM) and improve image quality. The polishing 
process was performed with four different grades of silicon carbide 
sandpapers (125 μm, 58.5 μm, 25.8 μm, and 15.3 μm) and four grades of 
diamond/ethanol polishing suspension (6 μm, 1 μm, 0.25 μm, and 0.1 
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μm). The samples were thoroughly cleaned ultrasonically three times 
with ethanol to guarantee that no larger particles remained on the 
sample’s surface before the finer polishing process. 

For BSE imaging, a 10 nm carbon layer was coated on the surface of 
each sample before imaging in order to avoid the charging effect and 
improve image quality. An FEI Nova 450 FEG-SEM machine with 5 keV 
low-energy electrons and 10 µs electron beam dwell time was used with 
a scanning area of 5.461 × 106 μm2 for each sample at × 1000 magni-
fication. At this magnification, one pixel represented approximately 67 
nm. Ten original BSE images at random non-overlapping positions for 
each sample were taken to acquire > 50,000 pore profiles. The high 
contrast BSE images can capture the solid phases and pore structure due 
to the high differences in atomic numbers between cement solids and 
Field’s metal. The images obtained by SEM were converted into an 8-bit 
grayscale and characterised with multifunctional image processing 
software (ImageJ) [46]. The grey-level threshold segmentation was 
determined by the K means algorithm in MATLAB software [47–49]. 
Other detailed image characterisation processes and reliability verifi-
cation are described elsewhere [12,26,50]. 

As for micro-CT imaging, a ZEISS Xradia XRM520Versa high- 
resolution X-ray computed tomography machine with a scanning size 
sample of ≈2 × 2 × 2 mm was used for micro-CT image acquisition. The 
pixel size of the micro-CT images was approximately 0.7 μm. The 
scanning parameters applied in this study, including power, X-ray en-
ergy, detector, detector to sample distance exposure time and camera 
binning, were set to 10 W, 140 keV, 4 × detector, 200 mm, 7.0 s and 4, 
respectively. The images acquired from the micro-CT process were 
reconstructed and characterised in MATLAB software. The segmentation 
and imaging characterisation processes are similar to the FMIP imaging 
process. The data were then exported to Blender software for micro-
structural visualisation. 

2.3. Deep learning model and visualisation 

Upon acquiring BSE and micro-CT images, the deep learning model 
was adopted to analyse the differences in spatial correlation between 
LC3 and OPC pastes. The input data obtained from BSE and micro-CT 
images were separated into two datasets: binarised BSE and micro-CT 
images. In each dataset, every image was divided and categorised into 
squares with different physical sizes (6.76 μm, 13.52 μm, 33.8 μm, 
54.08 μm, 67.6 μm, 81.12 μm and 101.4 μm), but 6.76 μm images were 
not characterised for micro-CT, because of the resolution limit of micro- 
CT images; that is, 6.76 μm did not contain enough features to be ana-
lysed in the DNN. Next, each category of binarised BSE and micro-CT 
images was fixed to 200 × 200 pixels for each physical size. As for 
DNN training, 2000 randomly selected images were extracted from each 
category. Specifically, each physical size sample (category) contained 
1800 images in the training set, and the remaining 200 images were the 
test set to verify the accuracy of the classification. Two categories were 
randomly selected from all input images for the training and verifying 
process. 

The adopted DNN model [43] contained seven convolutional layers 
followed by seven batch normalization layers and seven ReLU layers, 
showing optimal classification accuracy and training speed. Unlike the 
original neural network, the input data of the DNN used in this study did 
not remove nanoscale features because we were concerned that the 
micro-CT images did not have most of the nano-features compared with 
the BSE images. The binarised images covering a total area of 8 × 105 

μm2 were twice as large as the input areas of the previous work [43]. The 
image coverage area in this study exceeded the recommended size for 
2D cementitious composite image microstructural analyses [27,51]. 

A developed layer-wise relevance propagation, deep Taylor decom-
position, was used to decompose and explain the classification decisions 
of the DNN in this study. As a method to determine the threshold for a 
given value image, Isodata thresholding [52] was used to distinguish 
pores and solids on the binarised images. The details of deep Taylor 
decomposition and statistical characterisation of binarised BSE images 
have been described in our previous work [43]. 

2.4. Spatial correlation characterisation 

The correlation distance obtained from the two-point correlation 
function can be used to demonstrate the spatial correlation of the cement 
microstructure. The cement microstructure is divided into pores and 
solid areas for each binarised BSE image. Therefore, the microstructure 
can be described as follows: 

S(i, j) =
{

1ifij ∈ solidareas
0ifij ∈ Poreareas (1)  

where S denotes the square lattice and ij is the pixel index and de-
termines the location within the image. Given two random phases i and j, 
the S(i, j) can be converted with the location vector and the two-point 
correlation function (S2) defined as: 

S2(i, j) = 〈S(i, j)S(i + xi, j + xj)〉 (2)  

where xi and xj indicate the position of two points extracted from 
random phases i and j, and the angular brackets derive the probability of 
xi and xj both from the solid phase. The S(i, j) can be replaced by the 
function P(i, j), which determines the probability of the pixels iandj being 
solid. By only considering the distance (r) between any pair of phases to 

Table 1 
Chemical composition of the calcined clay and OPC from X-ray fluorescence (weight %).  

Compounds (%) SiO2 Al2O3 Fe2O3 CaO MgO SO3 K2O Na2O TiO2 LOI 

CC  57.20  38.56  1.02  0.01  0.20  0.08  2.54  0.23  0.14  0.02 
Cement  24.42  4.90  2.22  61.93  1.86  3.69  0.39  0.11  0.29  0.19  

Fig. 1. Particle size distribution of calcined clay, cement, and limestone.  

Table 2 
Mix proportion of OPC and LC3 pastes.  

Sample Clinker Calcined clay Limestone Gypsum w/b 

LC3 50% 30% 15% 5%  0.5 
OPC 95% 0 0 5%  0.5  
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simplify the function, the function can be denoted as equation (3) and 
illustrated in Fig. 2: 

S2(r) = 〈P(i, j)P(i + r, j + r)〉 (3) 

As for QNM tests, all hardened cement paste samples were cut into 
small pieces of 5 × 5 × 5 mm cubic, mounted in epoxy and polished with 
sandpaper and diamond pastes (for details, see Section 2.2). The nano-
mechanical properties of the cement paste were measured on the pol-
ished cross-sections using a Bruker’s Dimension iCon® atomic force 
microscope with PeakForce QNM mode. A diamond tip (PDNISP-HS) 
with a spring constant of 338.33 N/m and a deflection sensitivity of 
193.8 nm/V was used, and a HOPG sample was used to calibrate the 
radius of the diamond tip. The scanning areas were selected from the 
middle of the cement paste samples. 

2.5. Pore shape characterisation 

The shape descriptor, solidity, a geometric property describing a 
shape, defined as the percentage of a convex hull with an interior angle 
< 180◦that fully encapsulates the pore [26]. The solidity of a pore is 
related to the formation of hydration products and can be calculated for 
a non-circular pore with a certain area as: 

Solidity =
A

convex A
(4)  

where A is the area of a pore, and convex A is the area of a convex hull 
that fully encapsulates the pore. 

3. Results and discussion 

In this section, the microstructure of 28-day LC3 is compared with 
OPC to reveal the microstructural refinement effect on spatial correla-
tion and pore morphology. First, two imaging techniques (i.e., BSE and 
micro-CT) were adopted to analyse the statistical pore size distribution. 
Second, images from both techniques were used in DNN training to find 
an appropriate physical image size (refers to pixel size) and technique 
with minimum computational costs. Next, deep Taylor decomposition 
was conducted to visualise the DNN decision and extract the 

characteristic features to reveal the spatial correlation of LC3 and OPC. 
Then, the two-point correlation function and QNM were applied to 
quantify LC3′s microstructural refinement on both pores and solid pha-
ses, respectively. Finally, the pore morphological analysis was per-
formed to represent pore deformation and hydration rate changes. 

3.1. Microstructure virtualisation 

BSE and micro-CT imaging techniques were applied to demonstrate 
the statistical pore size distribution of LC3 and OPC. First of all, the 2D 
microstructural analysis of the OPC and LC3 paste samples was con-
ducted using high-resolution BSE images to understand the nano-/ 
micro-scale microstructural modification effects of LC3 with a pixel size 
of ≈0.07 μm. The original BSE images of LC3 and OPC were binarised 
into solid and porous phases, shown in Fig. 3 (a), (b), (d) and (e). In 
order to visualise the microstructure of LC3 and OPC, a pore diameter 
descriptor, dp, was used to demonstrate equivalent pore diameters due to 
the irregular pore shapes observed in the cement microstructure, as 
indicated in equation (5): 

dp = 2 ×

̅̅̅̅̅̅̅̅̅
area

π

√

(5) 

The significant reduction in large pores in LC3 compared with OPC 
can be seen in the equivalent pore diameter-based colour map illustrated 
in Fig. 3 (c) and (f). The largest equivalent pore diameter of LC3 had 
≈30% reduction compared with OPC, ≈25 μm and ≈35 μm, respec-
tively. Furthermore, the equivalent pore diameters of LC3 were mainly 
concentrated around < 5 μm. In contrast, many pores with equivalent 
pore diameters between 20 and 30 μm were observed in OPC, showing 
the denser microstructure of LC3. The reduction in both the largest and 
the average equivalent pore diameters suggested a refining of the LC3 

microstructure. 
The micro-CT images obtained from LC3 and OPC were converted 

into virtual cement microstructure templates in order to assess the 
reliability of our work, as shown in Fig. 4 (a) and (b), respectively. Due 
to the limited resolution of the micro-CT, the finest pore diameter that 
can be captured was ≈0.7 μm. The micro-CT pore size distribution re-
sults showed a similar trend to the 2D BSE image analysis, indicating 
that the total pore volume of LC3 was lower than that of OPC at 28 days 
of hydration, as shown in Fig. 4 (c). Compared with OPC, a significant 
reduction in large pores (equivalent pore diameter > 100 μm) can be 
observed in 28-day LC3. Furthermore, the largest pore diameter of LC3 

was approximately 92% compared with that of OPC, being 234 μm and 
253 μm, respectively, illustrating the denser microstructure of LC3. This 
result demonstrated a similar trend obtained from the 2D image anal-
ysis, indicating the pore modifications of LC3, especially the reduction in 
larger pores. 

3.2. Deep learning-based microstructural characterisation 

3.2.1. Influence of image size and resolution on DNN classification 
accuracy 

The DNN-based characterisation was used to analyse the micro-
structure of the cement samples with different sized physical images and 
resolutions from BSE and micro-CT image datasets. As shown in Fig. 5 
(a), classification accuracy grew with an increased physical size of the 
BSE and micro-CT images because more microstructural details were 
contained in each image, reflecting the microstructural differences be-
tween LC3 and OPC. The classification accuracy stabilised after 81.12 ×
81.12 μm with an accuracy of approximately 74% and 96% for the 
micro-CT and BSE images, respectively. Thus, for both BSE and micro- 
CT, images with an area of 81.12 × 81.12 μm contained nearly the 
same effective properties as the entire sample at this size. 

Furthermore, 22% of the lower accuracy on micro-CT images could 
be mainly attributed to the limitation of resolution leading to a lack of 

Fig. 2. Schematic of the two-point correlation function for a binary 
microstructure. 
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detailed microstructural information at the nanoscale (from ~ 70 nm to 
~ 700 nm in this case) compared with BSE images shown in Fig. 5 (b) 
and (c). This is because cementitious materials are known to have a 
scale-dependent fractal property [53]. The representative volume 
element (RVE), a critical parameter in building a sensible proc-
essing–structure–property connection to obtain insight underlying a 
material’s behaviour, is the smallest volume representing the charac-
teristics with nearly the same effective properties of the entire sample 
[15]. The representative features include not only solid phases and pores 
but also the statistical distribution and spatial positioning, leading to an 
RVE size multiple times larger than the largest particle size of the 
composite [19,54]. The BSE images with 81.12 × 81.12 μm can be 
considered as the RVE of 28-day LC3 and OPC in this study. Therefore, 
only the categories of BSE image with a size of 81.12 × 81.12 μm were 
used in deep Tylor decomposition to represent the entire sample with 
the lowest costs for microstructural characterisation. 

3.2.2. Visualisation of the DNN via deep Taylor decomposition 
Deep Taylor decomposition, one of the most commonly used algo-

rithms to visualise and demonstrate the decisions of a DNN, was con-
ducted to assist in understanding the DNN decisions and explaining the 
microstructural refinement effects of LC3. It is helpful to extract and 
visualise the decision of the DNN model because DNN prediction is like a 
‘black box’ and hard to understand. Fig. 6 presented the process of the 
deep Tylor decomposition of DNN results using 81.12 × 81.12 μm cat-
egories. Relevance maps were generated to illustrate the relevance of 
each pixel in the images to visualise the DNN classification decisions, as 
shown in Fig. 6 (b). Features shown in the relevance map were recog-
nised as the characteristic patterns of the binarised BSE image cate-
gories. The relevance map exhibits the characteristic features of 
characteristic patterns assisting in differentiating the LC3 and OPC 
samples of the DNN. Considering the relative large-scale homogeneity of 
cement [55], characteristic patterns were consistently observed in the 
middle areas of the binarised BSE images. 

As shown in Fig. 6 (b), the relevance maps are separated by red 
(relevant low-density regions or pores) and blue (relevant high-density 
regions or solid phases). It is worth noting that the central area of the 
images has a greater probability of featuring complete pore/pore 

clusters or solid phase structures. This particular attribute significantly 
aids the identification process of the DNN since the central regions 
frequently exhibit discernible and distinct characteristic patterns that 
can be effectively learned by the network. It can be seen that LC3 had 
more relevant regions in high-density regions, whereas the most rele-
vant areas of OPC were related to low-density regions. The pore clusters 
more likely appeared in low-density regions resulting in a relatively high 
porosity region [43,56]. In comparison with low-density regions, the 
high-density regions consisted of unhydrated cement and hydration 
products in both LC3 and OPC, as well as fillers in LC3 (i.e., LS) and the 
low reactivity materials in CC (i.e., muscovite and quartz). The pore 
clusters and solid phases are related to cement hydration because hy-
dration products gradually grow on the surface of the solid phases and 
fill the pores during cement hydration [14]. Fig. 6 (c) represented the 
70% most relevant area from Fig. 6 (b). These regions were then used to 
extract the characteristic features at corresponding regions from the 
original BSE images to form Fig. 6 (d). In Fig. 6 (d), the extracted fea-
tures of LC3 are mostly related to the solid phase, indicating that the 
solid phases of LC3 have typical characteristics that distinguish them 
from OPC. In contrast, the extracted features of OPC are mostly pores, 
which is attributed to its higher porosity and different pore shapes. 
Specifically, OPC has more volume of pores with reduced solidity 
compared with LC3, as described in Section 3.1. 

Based on the 2000 extracted characteristic features of each cement 
type given in Fig. 6 (d), the hidden effects of spatial heterogeneity in the 
long-range correlation were demonstrated by extracting high- 
dimensional characteristic patterns, as shown in Fig. 7. The characteri-
sation indicating the probability of navigating the shared pores at 
various locations in OPC and LC3 is illustrated in Fig. 7 (a) and (b), 
respectively. Three typical heatmaps are given for each type of cement 
to signify the general changes in characteristic patterns. The differences 
in the general trend of the characteristic patterns between LC3 and OPC 
revealed a deviation between strength and porosity based on the point- 
set topological theory [57]. The high-intensity regions in the heatmaps 
demonstrated increased topological parameters, such as pore compact-
ness and connectedness [58], and consistency of the distribution of the 
pores at the nanoscale. These parameters could influence stiffness and 
strength performance [59]. It can be seen that all heatmaps of LC3 show 

Fig. 3. Visualisation of BSE images. (a) Typical 28-day BSE image of LC3. (b) Binarised BSE image of (a). (c) Equivalent pore diameter-based colour map of metal- 
intruded LC3 based on (b). (d) Typical BSE image of 28-day OPC. (e) Binarised BSE-image of (d). (f) Equivalent pore diameter-based colour map of metal-intruded 
OPC based on (e). 
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a lower probability of the occurrence of continuous pores and less 
connectivity with pores compared with OPC. The reduced pore con-
nectivity and pore occurrence possibility resulted in a more refined 
microstructure with a higher apparent matrix densification of LC3, and 
thus provided better mechanical and durability-related performance 
[60]. In contrast, the high probability of occurrence of OPC’s solid 
phases (black regions in the heatmap) was most likely finer than 2.5 μm, 
as illustrated in Fig. 7 (a). However, LC3 had more connected larger solid 
areas in the heatmap, which implies minimizing stress concentrations to 
form a high-connectivity force-chain network [61] and finally contrib-
uted to superior mechanical properties and durability-related perfor-
mance. In addition, the lower average solid particle size in LC3 resulted 
in a higher surface area that could also contribute to a higher hydration 
rate compared with OPC. This is consistent with the hydration and 
mechanical performance improvements mentioned in the literature 
[11–13]. 

3.3. Spatial distribution characterisation 

The two-point correlation indicates the probability of spatial distri-
bution between two random pixels from pore clusters. Ideally, the two- 
point correlation result should equal the porosity when correlation 
distance r = 0. With increased distance between two random pixels, the 
two-point correlation result will decrease and finally vibrate around the 
square of the porosity [62]. In Fig. 8 (a) and (b), the porosities calculated 
by the two-point correlation function of the LC3 and OPC images were 
≈0.30 and 0.34, respectively. These values were consistent with those 
revealed in the image-based pore size distribution results, which also 
proved the reliability of the two-point correlation function used in this 
study. Furthermore, the maximum correlation distance is independent 
of total porosity [63,64]. In this study, the distances at which the two- 
point correlation function maintained stable for LC3 and OPC were 
calculated at ≈20 μm and 30 μm, respectively. The 33% lower maximum 
correlation distance stabilising the two-point correlations in 28-day LC3 

Fig. 4. Virtualisation of reconstructed microstructure from the original micro-CT images of (a) LC3 and (b) OPC. (c) Pore size distribution of LC3 and OPC at 7 and 28 
days from analysis based on micro-CT images. 
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Fig. 5. (a) Classification accuracy of the test datasets on BSE and micro-CT images with various physical sizes using the same DNN. (b) Examples of DNN classi-
fication confusion matrix of BSE binary images. (c) Examples of DNN classification confusion matrix of micro-CT binary images. In (b) and (c), the green background 
and number represented the images accurately identified and classification accuracy, respectively, whereas the red background and numbers represented the images 
that failed to be classified and inaccuracy. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. Visualisation and characterisation feature extraction via deep Taylor decomposition. (a) Typical BSE cross-section images of LC3 and OPC with a physical size 
of 81.12 × 81.12 μm. (b) Locations of characteristic features relevant to DNN decision where red represents low-density areas or pores, and blue represents high- 
density areas or solid phases. (c) Locations of the characteristic regions with 70% of the total relevance in characteristic features. (d) Extracted characteristic features 
at the corresponding areas of (a). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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can infer that LC3 has a smaller RVE size. The results are possibly due to 
an increasing packing density in the microstructure of LC3, where the 
small particle size of CC and LS filled the pores and voids in the cement 
without loosening the packing of cement [65]. The reduced distance 
stabilising the two-point correlations is also likely related to the 
pozzolanic reaction and the synergetic reaction between CC and LS, 
contributing to more hydration products and thus a denser and more 
uniform microstructure than OPC. 

To further understand the spatial correlation between the solid 
phases of LC3 and OPC pastes, PeakForce QNM was used to evaluate the 
nanomechanical properties. Knowing the microstructural densification 
and uniformity are also influenced by the type and volume of the hy-
dration products and unhydrated solid phases. Fig. 9 presents the 
nanomechanical properties (E) of 28-day LC3 and OPC pastes with a 
scanning area of 20 × 20 µm by PeakForce QNM. The contour maps of E 
of LC3 and OPC are illustrated in Fig. 9 (a) and (b). The main phases in 
both cement pastes included defects and pores (DP), low-density 

hydration products (LD), high-density hydration products (HD), and 
unhydrated grains (UG). The unhydrated metakaolin (MK) only present 
in LC3 had a slightly lower E than LD [66]. Due to the high demand for 
surface flatness, the defects and pores were filled with epoxy with the 
impregnation process to maintain the flatness of the sample surface. DP 
was still accurately identified from the solid phases with limited influ-
ence on the accuracy of QNM because epoxy has a much lower E than 
other solid phases [25]. 

The statistic probability distribution of E in the solid phases was 
fitted via multimodal Gaussian distribution with R2 > 0.995 to identify 
the fractions of different solid phases, as indicated in Fig. 9 (c) and (d). In 
Fig. 9 (e), it can be seen from the characteristic E ranges that LC3 had 
a>2-fold low-density volume than OPC, which could be attributed to the 
unhydrated MK in CC. According to the existing literature, the hydration 
rate of 15% MK is ≈33% [67]. Therefore, ≈10% unhydrated MK com-
bined with low-density hydrates in LC3, where E ranged from 15 to 20 
GPa. The presence of CC and LS promoted hydration because of the 

Fig. 7. Typical heatmaps of the shared characteristic pattern changes of (a) OPC and (b) LC3. The heatmap was achieved by iterating over the most similar shared 
characteristics patterns by deep Taylor decomposition. 

Fig. 8. Two-point correlation functions of the microstructure for cement samples with different physical distances in (a) 28-day LC3 and (b) 28-day OPC images.  
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nucleation effect, whereby MK provides various nucleation sites on its 
surface, forming carboaluminates [12]. Due to the layered structure of 
MK, these carboaluminates are deposited in the pore space with a similar 
deposition mechanism to LD [68]. Furthermore, due to the high clinker 
substitution ratio, the proportion of UG decreased accordingly in LC3, 
leading to only 60% of the volume of UG compared with OPC. More 
areas were found in LC3 to have an E between 15 and 38 GPa, indicating 
a minor variation of E and thus a more uniform cement microstructure. 
A more uniform microstructure could increase mechanical strength 
while decreasing the stress concentration in the LC3 paste [25], which is 
also consistent with the DNN results, indicating that LC3 has a higher 
hydration rate than OPC. The results have significant implications for 
the design of LC3 concrete, as they provide valuable insights for opti-
mising its mechanical properties and improving durability performance. 
Furthermore, it is worth mentioning that in cases where the mean 
strength surpasses the threshold required to counteract the localisation 
effect, a multi-scale analysis can be pursued to delve deeper into the 
subject. This analysis could involve examining the comparison between 
the micro-scale and meso-scale properties [38,69,70], providing valu-
able insights into the material behaviour at different scales. 

3.4. Pore morphological characterisation 

In order to evaluate the localised pore structure differences between 
LC3 and OPC, the pore morphology descriptor, solidity, was used to 

represent pore deformation and hydration rate changes from original 
BSE images. Solidity is influenced by the growth of hydration products 
[26]. Fig. 10 (a) and (b) are a scatter diagram and the average statistical 
distribution against the equivalent pore diameter of solidity in LC3 and 
OPC, respectively. The x-axis of OPC was shifted to the right to observe 
Fig. 10 (b) clearly. The average solidity was similar and indicated a 
downward trend for both OPC and LC3 due to hydration and packing. 
Noting that the average solidity of LC3 was slightly lower than that of 
OPC. This is mainly attributed to the combination of the pozzolanic 
reaction of MK in the CC and the synergetic reaction between LS and CC, 
providing nucleation sites to form carboaluminates and external C-(A)- 
S-H formation [29,68]. A greater variety and quantity of hydration 
products and a higher hydration rate could lead to slight changes in the 
cement microstructure, resulting in higher pore surface areas of LC3. 
These extra hydration products are deposited on the surface of the solid 
phases and segment larger pores into finer pores, resulting in pore 
modifications in LC3, consistent with the pore size distribution results 
shown in Figs. 3 and 4. It can be seen, however, that LC3 has a slightly 
higher solidity after 6 μm compared with OPC, which can be attributed 
to unhydrated LS and low-reactivity solid phases in CC, such as 
muscovite and quartz. These low-reactivity solid phases mainly act as 
fillers and undergo little or no hydration reactions [71]. According to the 
pore size distribution results, LC3 has less volume of larger pores, 
inferring the slightly higher solidity of larger pores had less influence on 
the overall microstructural refinement. The pore morphological analysis 

Fig. 9. PeakForce QNM contour maps of Young’s modulus (E) of (a) LC3 and (b) OPC. Statistical probability distribution of E of (c) LC3 and OPC. (d) Three 
characteristic E ranges of tested samples. 
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also suggested that the cylindrical pore assumption in Washburn’s 
equation [45] of mercury intrusion porosimetry analysis could poten-
tially complement the shape descriptor to improve the accuracy of 
future microstructural characterisation of cementitious materials in 
further research. 

4. Conclusions 

Based on the results presented here, we have described microstruc-
tural refinement mechanisms on pore size, the spatial correlation of 
pores and cement composites, and the solidity of 28-day LC3 through a 
deep learning approach combined with image-based microstructure 
characterisation. The salient findings are shown below.  

• The BSE images were adopted in deep learning characterisation, 
which increased ≈20% accuracy by capturing the nano-features 
compared to micro-CT at corresponding physical image size. A 
physical image size of 81.12 × 81.12 μm was used in DNN training 
with the optimised efficiency for localised microstructural 
characterisation.  

• Based on the decomposition of DNN, LC3 had a lower probability of 
occurring connected pores and pore clusters than OPC. On the other 
hand, LC3 had a higher likelihood of forming connected larger solid 
areas than OPC, which minimised stress concentrations and led to a 
higher apparent matrix densification. Both of these contributed to 
improved mechanical properties and superior durability-related 
performance.  

• From the two-point correlation analysis, LC3 had a 33% lower 
maximum correlation distance than OPC, demonstrating that LC3 

possessed a smaller RVE size and increased packing density in its 
microstructure. Based on nanomechanical property mapping, LC3 

had a more uniform microstructure with 40% fewer unhydrated 
grains compared to OPC, which increases the mechanical strength 
while decreasing the stress concentration in LC3 paste.  

• LC3 had lower average solidity than OPC, with an equivalent pore 
diameter < 6 μm, illustrating greater pore deformation and hydra-
tion rate, which can be attributed to the formation of carboalumi-
nates and external C-(A)-S-H from the pozzolanic reaction and 
synergetic reactions between CC and LS. The slightly higher solidity 

after 6 μm may be attributed to unhydrated LS and low-reactivity 
phases in CC. 

In summary, we reveal the microstructural refinement mechanisms 
of 28-day LC3 and lay the basis for localised microstructural character-
isation of cementitious materials. By understanding the microstructural 
refinement mechanisms of LC3, such as microstructure uniformity 
leading to decreased stress concentration, practitioners can make 
informed decisions in the design and future developments of LC3-based 
concrete. Additionally, these findings contribute to establishing the 
structure–property relationship in LC3, thereby complementing tradi-
tional microstructural analyses of cementitious materials. 
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